Симметрия и асимметрия в их различных физических проявлениях. Реферат: Симметрия и асимметрия

Свойства и качества композиции

Взаимосвязь тектоники и объемно-пространственной структуры

Отношение материал-пространство несет в себе тектонические характеристики, а отношение объем-пространство – представление о характере объемно-пространственной структуры.

Рис. 2.37 - Проявление тектоничности в форме

Конструкция должна работать. Чрезмерные, с солидным запасом прочности сечения элементов конструкции, особенно открытых структур резко снижают эстетический уровень этих изделий. Чем меньшим количеством материала удается обеспечить работу конкретной конструкции, тем больше оснований считать ее и эстетически совершенной. В этой формуле находит выражение и органичная связь тектоники с объемно-пространственной структурой.

В античном мире симметрия считалась условием красоты. Картина Мироздания представлялась симметричной. Древние греки считали Вселенную симметричной, а Пифагор говорил о сферичности Земли и движении ее по сфере.

Симметрия – принцип организации композиции, где элементы расположены правильно относительно плоскости, оси или центра. При повороте фигуры вокруг центра, оси или плоскости симметричные элементы полностью совмещаются друг с другом. Существует несколько видов симметрии.

Симметрия – одно из наиболее ярких и наглядно проявляющихся свойств композиции. Это средство , с помощью которого организуется форма архитектурных сооружений, машин, станков, бытовых приборов и т.п. и наиболее активная ее закономерность.

Наиболее простой вид симметрии – зеркальный – основывается на равенстве двух частей фигуры, расположенных одна относительно другой как предмет и его отражение в зеркале. Воображаемая плоскость, которая делит такую фигуру пополам, называется плоскостью симметрии. При проектировании транспортных средств в дизайн-студиях широко используется подобный вид симметрии, когда половина пластилиновой модели приставляется к зеркалу и оценивается визуальное восприятие натуральной величины объекта. Зеркальная симметрия широко распространена в предметах быта, сувенирных изделиях.

Другой вид симметрии – осевая симметрия – обусловлена конгруэнтностью (совместимостью), достигаемой вращением фигуры относительно оси симметрии, т.е. линии, при повороте вокруг которой фигура может неоднократно совмещаться сама с собой.

Осевая симметрия характерна равноудаленностью точек относительно оси (а не плоскости, как в первом случае). Симметричная фигура как бы вращается вокруг оси, оставаясь в пределах описывающей её кривой. Пример подобной симметрии можно найти в органическом мире, но ещё больше в предметном, искусственном. В органическом мире - это сосновая шишка, яблоко или орех. Среди искусственных предметов симметричных тел бесконечное множество - это и посуда, и токарные изделия, и архитектурные детали, и т. п.



Характерной разновидностью является винтовая симметрия, которая получается в результате винтового движения точки или линии вокруг неподвижной оси. Винтовая симметрия обычно применяется в элементах различного рода машин, станков, самолетов, пароходов, винтовых лестниц.

Проектировщику же, чаще всего приходится сталкиваться с проявлением асимметрии в симметричных формах. Знания такого рода закономерностей может помочь в работе над композицией различных станков, машин и приборов.

Абсолютной симметрии практически не существует в природе. Что касается техники, то форма станков, машин, приборов, различного оборудования, как правило, тоже имеет отступления от симметрии, вызванные условиями их функционирования, а следовательно, и особенностями конструкции.

Асимметрия в симметрии может развиваться различно. В одних случаях – это асимметрия технической структуры, не находящие отражения во внешнем облике предмета (например: поперечное расположение двигателя).

У станков, при общей симметричной основе формы, как правило, асимметрично расположены отдельные части механизма, например: органы управления.

Важно, чтобы такие отступления от симметрии не казались ошибкой при формообразовании, а придавали форме особую выразительность и индивидуальность.

Для форм, допускающих отступления от строгой симметрии, с развитием асимметричного начала, может возникнуть момент, когда предмет перестает быть симметричным. Таким образом, имеет смысл говорить о существовании некоторых пределов, за которыми наступает дезорганизация формы.

Асимметрия – принцип организации формы, который основывается на динамической уравновешенности элементов, на впечатлении движения их в пределах целого. С точки зрения математики, понятие асимметрии – лишь отсутствие симметрии; в дизайне симметрия и асимметрия – два противоположных метода закономерной организации пространственной формы, подчиненных собственным внутренним законам. Асимметрия отнюдь не исчерпывается разрушением симметрии. Единство является целью построения асимметричной системы, также как и симметричной. Однако достигается оно иным путем. Тождество частей и их расположение заменяется зрительным равновесием. Соподчиненность частей – основное средство объединения асимметричной композиции.

Если симметричная форма воспринимается легко и сразу, то асимметричная читается постепенно.

Асимметричная форма для одних изделий – столь же объективный результат решения функциональной задачи, каким является форма симметричная для других. Однако между двумя этими свойствами формы существует принципиальная разница.

Гармония развитой асимметричной формы строится на сложных отношениях многих закономерностей композиции, поскольку элементы формы не связаны осью симметрии.

Сама по себе симметрия еще не гарантирует гармонии, так же как асимметрия не означает дисгармонию.

Вся история искусства, архитектуры, техники подтверждает, что асимметричные композиции: и простые, и сложные, с точки зрения эстетической ценности, не уступают симметричным. Вместе с тем, работа над изделием асимметричной формы сложнее – она требует развитой интуиции и тонкого чувства композиционного равновесия. Особенно сложна работа над многоэлементными изделиями со сложной ОПС, отдельные части которой могут иметь свои частные оси симметрии.

Асимметрия чутка к изменению пропорций, поэтому, работая над асимметричной формой, проектировщику с особым вниманием необходимо относиться к пропорциональному строю.

Рассматривая симметричные формы, мы не акцентировали внимание на соподчиненности элементов, так как симметрия сама по себе способствует соподчинению.

Асимметричная же форма лишена этой организующей основы, и соподчиненность ее элементов основывается на многих более тонких закономерностях, в совокупности сводящихся к композиционному равновесию.

Для гармонизации асимметричной формы особенно необходим тщательный предварительный анализ. Здесь обычно все строится на нюансах. Основная задача при этом – достичь целостности формы.

В технике асимметрия формы как качество композиции станков, машин, приборов, различного оборудования отражает принцип развития их технической структуры, их общей инженерной компоновки.

Как уже указывалось ранее, негласный лозунг физиков-теоретиков «правильная теория должна быть красивой» находит свое место в построении новых теоретических моделей и связан зачастую с симметрийными представлениями, а эстетический фактор играет при этом не последнее значение.

Интуитивно симметрия в своих простых формах понятна любому человеку и часто мы выделяем ее как элемент прекрасного и совершенного. В известной мере симметрия отражает степень упорядоченности системы. Например, окружность, ограничивающая каплю на плоскости, более упорядочена, чем размытое пятно на этой же площади, и следовательно, более симметрична. Поэтому можно связать изменение энтропии как характеристики упорядочения с симметрией: чем более организовано вещество, тем выше симметрия и тем меньше энтропия.

Одно из определений понятий симметрии и асимметрии дал В. Готт : симметрия - понятие, отражающее существующий в природе порядок, пропорциональность и соразмерность между элементами какой-либо системы или объекта природы, упорядоченность, равновесие системы, устойчивость, т.е. если хотите, некий элемент гармонии. Асимметрия - понятие, противоположное симметрии, отражающее разупорядочение системы, нарушение равновесия и это связано с изменением, развитием системы. Таким образом и из соображений симметрии-асимметрии мы приходим к выводу, что развивающаяся динамическая система должна быть неравновесной и несимметричной. В ряде случаев симметрия является достаточно очевидным фактом. Например, для определенных геометрических фигур нетрудно увидеть эту симметрию и показать ее путем соответствующих преобразований, в результате которых фигура не изменит своего вида.

Однако в общем смысле понятие симметрии гораздо шире и ее можно понимать как неизменность (инвариантность) каких-либо свойств объекта по отношению к преобразованиям, операциям, выполняемым над этим объектом. Причем это может быть не только материальный объект, но и закон, математическая формула или уравнения, в том числе и нелинейные, которые, как мы уже знаем из разд. 1.7, играют большую роль в самоорганизующихся процессах.

Дать более конкретное определение симметрии, чем у Готта, в общем случае затруднительно еще и потому, что она принимает свою форму в каждой сфере человеческой деятельности. Как мы обсуждали только что в предыдущем разделе, в искусстве симметрия может проявиться в соразмерности и взаимосвязанности, гармонизации отдельных частей в целом произведении. Что касается математических построений, то там также имеют место симметричные многочлены, которые можно использовать для существенного упрощения решения алгебраических и дифференциальных уравнений . Особенно полезным оказалось использование симметрийных представлений в теории групп с введением инварианта, т.е. такого преобразования, когда соотношения между переменными не изменяются. Отражением связи пространства, симметрии и законов сохранения может служить мысль великого французского математика А. Пуанкаре: «Пространство - это группа».

Наиболее наглядное и непосредственное применение идей симметрии имеет место в кристаллографии и физике твердого тела, изучающих физические свойства кристаллов в зависимости от их строения. Даже непосвященному человеку хорошо видна здесь ассоциация с неким совершенством, порядком и гармонией. Симметрия является для мира кристаллов естественной базой их физической сущности. Один из создателей современной физики твердого тела Дж. Займен вообще считал, что вся теория твердых тел основана на трансляционной симметрии. Здесь симметрия проявляется при совмещении геометрических тел, например правильных многогранников при повороте их в пространстве на определенные углы, а также при перемещениях в атомной решетке на определенные величины векторов трансляции, кратных периоду решетки:

(1.8.1)
где - вектор обратной решетки реального кристалла, = 1/a (a - период решетки), - волновой вектор.

Более глубокое понимание и применение симметрии связано, как мы уже рассматривали в главе 1.2, с изучением и обоснованием законов сохранения, отражающих фундаментальные свойства пространства-времени. Напомним, что симметрия относительно произвольного сдвига во времени приводит к закону сохранения энергии для консервативных (замкнутых) систем

E = const. (1.8.2)
Неизменность характеристик физической системы при произвольном перемещении ее как целого в пространстве на произвольный вектор приводит к закону сохранения импульса

P = mv = const, (1.8.3)
И, наконец, симметрия относительно произвольных пространственных поворотов (изотропность пространства) связана с законом сохранения момента импульса

(1.8.4)
Так как категория симметрии относится к любому объекту или понятию, то она в полной мере применяется, например, к физическому закону. А поскольку суть физического закона - нахождение и вычисление идентичного в явлениях, то для инерциальных систем, согласно принципу относительности Галилея, эти физические законы будут во всех системах одинаковы. Следовательно, они инвариантны относительно описания явлений как в одной инерциальной системе, так и другой и тем самым сохраняют симметрию, В 1918 г. были доказаны теоремы Нетер, смысл одной из которых состоит в том, что различным симметриям физических законов соответствуют определенные законы сохранения. Эта связь является настолько всеобщей, что ее можно считать наиболее полным отображением понятия сохранения субстанций и законов, их описывающих, в природе. Как сказал Р. Фейнман: «Среди мудрейших и удивительных вещей в физике эта связь - одна из самых красивых и удивительных».

Различие видов симметрии связано с разными способами пространственно-временного преобразования одной инерциальной системы в другую инерциальную систему. Остановимся на этом несколько подробнее. Каждому такому пространственно-временному преобразованию соответствует определенный вид симметрии. Так, перенос начала координат в произвольную точку пространства при неизменности физических свойств связан с симметрий таких преобразований (это как раз и есть трансляционная симметрия) и означает физическую эквивалентность всех точек пространства, т.е. его однородность.

Поворот координатных осей в пространстве связан с физической эквивалентностью разных направлений в пространстве и означает изотропность пространства. Симметрия относительно переноса во времени связана с физической эквивалентностью различных моментов времени, что должно также отражать идею независимости хода времени от его начала (время протекает одинаково). Откуда, кстати, следует, что однородность времени проявляется в его равномерном течении. Такое заключение позволяет полагать, что относительная скорость всех процессов, протекающих в природе, одинакова. Этот факт равномерности течения времени был установлен экспериментально с точностью до 10-14 с за период ~10 миллионов лет. В качестве примера можно привести тот факт, что спектральный состав излучения атомов звезд, испущенного миллионы лет тому назад и воспринимаемого нами только сейчас, такой же, как спектральный состав таких же атомов на Земле.

В классической релятивистской механике симметрия выражается в принципе относительности. Равномерное и прямолинейное движение системы отсчета, в принципе любого тела, с произвольной скоростью, но меньшей, чем скорость света, связано с симметрией и физической эквивалентностью такого движения и покоя. Это подтверждается уже рассмотренным экспериментальным примером неразличимости параметров движения объекта в движущемся равномерно и прямолинейно поезде и поезде, стоящем неподвижно на путях. Как мы знаем, при скоростях используются упомянутые ранее принцип относительности и преобразования Галилея, при v ~ c (релятивистские скорости) - принцип относительности Эйнштейна и преобразования Лоренца. Такого рода симметрию (неразличимость покоя и равномерно-прямолинейного движения) можно условно определить как изотропию пространства-времени. Эти виды симметрии объединяются в СТО в единую симметрию четырехмерного пространства-времени.

Заметим также, что проблемы симметрии-асимметрии оказываются связанными между собой глубже, чем это кажется исходя из бинарной структуры этих понятий (да-нет). В качестве примера можно привести состояние человека во вращающейся центрифуге. Есть симметрия вращения (поворота), но относительность покоя и вращательного движения нарушается и человек в такой центрифуге по своему состоянию (вестибулярные ощущения) может определить, что его вращающаяся закрытая (герметизированная) камера на центрифуге вращается. Таким образом, возникает ситуация, при которой физические законы не инвариантны относительно вращения, т.е. налицо асимметрия.

То же можно сказать и о так называемых преобразованиях подобия, связанных с изменением масштабов физических систем. Асимметрия относительно масштабных преобразований связана с тем, что порядок размеров атомов имеет одинаковое для всей Вселенной значение (~10-10 м). И если мы будем уменьшать размеры, например изделий микроэлектроники, в том числе и пленочных, то характер поведения электронов в них изменится (возникают размерные эффекты), т.е. опять-таки может возникнуть асимметричность процессов при таких размерах. Другой пример несимметрии относительно масштабов в биологии приводит Б. Свистунов : несмотря на похожесть окраски, нельзя, например, раскормить осу до размеров тигра, так как при массе 10-100 кг она потеряет способность летать - возникает другое качество.

В связи с этими примерами имеет смысл рассмотреть другие виды симметрии. Упомянутые выше пространственно-временные симметрии условно объединяет одно общее свойство - они являются как бы «внешними» симметриями в том смысле, что отражают глубокие свойства структуры пространства-времени, представляющей собой форму существования любого вида материи, и поэтому справедливой для любых мыслимых взаимодействий и физических процессов. Весь физический опыт познания мира показывает отсутствие нарушений инвариантности законов природы относительно указанных пространственно-временных преобразований. В этом уже не только физический, но и философский смысл познания и установления объективности законов природы.

Однако во «внешних» симметриях не затрагивается «внутренний мир» физического объекта и он никак не связан с внешними свойствами. В природе кроме рассмотренных законов сохранения энергии, импульса и момента импульса существуют и другие законы сохранения, которые выполняются с той или иной степенью общности, в частности закон сохранения электрического заряда. В физике элементарных частиц, как мы видели, имеются и другие сохраняющиеся (или по крайней мере введенные так) величины, подобные электрическому заряду, - барионное число, четность, изоспин, ароматы (странность, очарование, красота и т.д.). Эти по сути квантовые числа обусловлены фазовыми преобразованиями волновой функции ψ и в целом не связаны со свойствами пространства-времени. Симметрия играет важную роль в исследовании физики микромира. Наш физик-теоретик А. Мигдал считал, что главными направлениями физики XX века были поиски симметрии и единства картины мира .

Сохранение подобных величин, непосредственно не связанных со свойствами пространства-времени, относится к понятию «внутренней» симметрии. Остановимся на законе сохранения электрического заряда. Смысл его в том, что сохраняется во времени алгебраическая сумма зарядов любой электрической изолированной системы. Математическом смыслом закона сохранения заряда является уравнение непрерывности

(1.8.5)
где j - плотность тока, ρ - объемная плотность заряда. Физический смысл этого уравнения состоит в том, что div j - расходимость тока (его движение) - связана с изменением во времени, т.е. перемещением электрического заряда. Электрический ток - направленное движение свободных электрических частиц. Физический смысл (1.8.5) отражает факт несотворимости и неуничтожимости электрического заряда.

Нужно подчеркнуть, что сохранение электрического заряда в изолированных (замкнутых) системах не сводится к сохранению числа заряженных частиц. Так при β-распаде нейтрона, не имеющего заряда, возникают ρ (с зарядом e+), электрон (заряд e-) и антинейтрино, также не имеющее заряда. В этой реакции появились две электрически заряженные частицы, но их суммарный заряд равен нулю, как и у породившего их нейтрона. Отметим, что важным следствием закона сохранения заряда является устойчивость электрона. Электрон является самой легкой электрически заряженной частицей. Поэтому ему просто не на что распадаться так как в этом случае нарушился бы закон сохранения электрического заряда. По современным представлениям время жизни электрона не менее 1019 лет, что говорит в пользу этого закона.

Прежде чем перейти к другим «внутренним» симметриям, остановимся еще на двух видах дискретной симметрии, которые отличаются от рассмотренных «непрерывных» симметрий сдвига и поворота. Это хорошо известная всем нам уже давно зеркальная симметрия, которая описывается пространственной инверсией, т.е. отражением системы координатных осей. Инверсия пространства осуществляется «сразу» (в зеркале), а ее повторное применение возвращает систему в исходное состояние. Это отражение называется операцией изменения «четности» (пример с теннисистом в зеркале). Другой дискретной симметрией является симметрия относительного обращения времени, приводящая к тому, что в симметричной Вселенной законы природы не изменяются при замене направления течения времени на обратное (t = -t и наоборот). Применение данной симметрии показывает, что направление возрастания времени (движение в одну сторону) не играет существенной роли. С равной вероятностью возможен и обратный процесс. Другими словами, установить путем наблюдения направление развития событий, в будущее или в прошлое, для равновесной симметричной системы невозможно. Если вы помните, мы приходили к такому же результату для детерминированной механики Галилея - Ньютона в замкнутых системах. Но одновременно мы уже знаем и о существовании «стрелы времени» для открытых неравновесных систем. И это еще раз показывает неумолимо, что время все-таки «течет» от прошлого к будущему и наша Вселенная неравновесна и асимметрична. Заметим однако, что понятие энтропии не однозначно применимо к микромиру, и, следовательно, изучая его, нельзя установить направление времени.

Дальнейшее расширение количества физических симметрий связано с развитием квантовой механики. Одним из специальных видов симметрии в микромире является перестановочная симметрия. Она основана на принципиальной неразличимости одинаковых микрочастиц, которые, как мы знаем из главы 1.5, движутся не по определенным траекториям, а их положения оцениваются по вероятностным характеристикам, связанным с квадратом модуля волновой функции |ψ|2. Перестановочная симметрия и заключается в том, что при «перестановке» квантовых частиц не изменяются вероятностные характеристики, квадрат модуля волновой функции - величина постоянная |ψ|2 = const.

Исследование реакций с участием элементарных частиц и античастиц, а также процессов их распада привело к открытию некоторых новых свойств симметрии, а именно зарядовой симметрии, или, более точно, зарядовой симметрии частиц и античастиц. При изучении ядерных взаимодействий нуклонов (сильные взаимодействия) было обнаружено, что эти ядерные силы почти не зависят от типа нуклонов, т.е. при этих взаимодействиях нет различия между нейтроном и протоном, оба они есть два состояния одной частицы - нуклона. Аналогично, μ-мезон может находиться в трех состояниях, соответствующих трем различным частицам. Такие состояния называются изотопическими и они характеризуются изотопическим спином или изоспином. Симметрия, связанная с этими процессами, и получила название изотопической симметрии.

С теорией элементарных частиц, типами взаимодействия полей и попыткой введения единого поля связаны еще два вида симметрии: кварк-лептонной и калибровочной. Кварк-лептонная симметрия проявляется в единой теории поля. Считается, что по существу кварки и лептоны не различимы в области очень больших энергий. Но в случае спонтанного нарушения симметрии и в области низких энергий они приобретают совершенно различные свойства. Тем самым установлено, что между кварками и лептонами возможны переходы. Этот факт может служить еще одним убедительным доказательством единства природы.

Калибровочная симметрия связана с масштабными преобразованиями, представляющими сдвиги нулевых уровней скалярного и векторного потенциалов полей. Сам термин «калибровочное поле» (преобразование, инвариантность) выдвинул немецкий математик Г. Вейль. Смысл идеи состоит в том, что физические законы не должны зависеть от масштаба длины, выбранного в пространстве, и не должны изменять свой вид при замене этого масштаба на любой другой. С обычной логикой это вроде бы самоочевидно: почему действительно законы Ньютона будут другими, если мы будем измерять путь в метрах, сантиметрах или в мегапарсеках. Однако значение изменения масштаба состоит в том, что оно имеет принципиально не физический характер, так как не вызвано какими-либо физическими воздействиями, а геометрический, в частности, изменение длины обусловлено лишь особенностями структуры пространства-времени. Тем самым пространство-время перестает быть лишь пассивным резервуаром вещества и поля, где происходят физические процессы, оно само начинает активно влиять на эти процессы. Геометрия приобретает динамический характер.

Особое значение приобретает принцип калибровочной инвариантности, если преобразования приходят локально в каждой точке пространства-времени и неоднородно, т.е. с изменяющимся соотношением от точки к точке. Вот это преобразование Г. Вейль и назвал масштабным или калибровочным. Его формулировка звучит так: все физические законы инвариантны относительно произвольных (однородных и неоднородных) локальных калибровочных преобразований. В таком виде принцип Вейля является по существу развитием общего принципа относительности Эйнштейна, что все физические законы в любой системе отсчета (инерциальной и неинерциальной) должны иметь одинаковый вид. Уместно в связи с этим заметить, что теория Эйнштейна была первой теорией, в которой геометрический фактор (искривление пространства-времени) напрямую связывался с физической характеристикой (гравитационной массой), что послужило в настоящее время дальнейшему развитию идей геометродинамики . Эти преобразования масштаба оставляют силовые характеристики поля (например Е и В для электромагнитного поля) неизменными. На основе калибровочной симметрии построены теории электрослабого и электросильного взаимодействий. Из этой симметрии следует, что частицы, обладающие определенными свойствами, которые объединяются понятиями «заряда» (электрический, барионный, лептонный), «цвета» кварков, являются источниками полей, если хотите, материальными носителями этих полей.

Вопросы симметрии играют решающую роль в современной физике. Динамические законы природы характеризуются определенными видами симметрии. В общем смысле под симметрией физических законов подразумевают их инвариантность по отношению к определенным преобразованиям. Необходимо также отметить, что рассмотренные типы симметрий имеют, естественно, определенные границы применимости. Например, симметрия правого и левого существует только в области сильных электромагнитных взаимодействий, но нарушается при слабых. Изотопическая инвариантность справедлива только при учете электромагнитных сил. Для применения понятия симметрии в физике можно ввести некую структуру, учитывающую четыре фактора.

1. Объект или явление, которое исследуется.
2. Преобразование, по отношению к которому рассматривается симметрия.

3. Инвариантность каких-либо свойств объекта или явления, выражающая рассматриваемую симметрию. Связь симметрии физических законов с законами сохранения.

4. Границы применимости различных видов симметрии.
Заметим также, что изучение симметричных свойств физических систем или законов требует привлечения специального математического анализа, в первую очередь, представлений теории групп, наиболее развитой в настоящее время в физике твердого тела и кристаллографии.

В целом же из законов сохранения, которые, как мы уже поняли, являются следствием пространственно-временной симметрии законов самой природы, следует условность разделения физики на механику, термодинамику, электродинамику и т.д. и, следовательно, налицо неразрывность единства всей природы.

Не останавливаясь здесь более подробно на понятиях физики живого, чему будет посвящена специально вторая часть данного курса, рассмотрим идеи симметрии-асимметрии применительно к проблемам объектов живой и неживой природы. По существу это философский, если хотите, но с естественнонаучной точки зрения вопрос о возникновении, развитии и сущности жизни. Чем отличаются молекулы живых веществ от неживых? В какой-то мере это связано с симметрией, точнее зеркальной симметрией. Если рассмотреть пример зеркального изображения двух молекул неорганического вещества воды и органического, но «неживого» вещества - бутилового спирта (рис.), то принципиальное различие проявляется в том, что молекула Н2О зеркально симметрична, а молекула спирта зеркально асимметрична.

«Левая» и «правая» молекулы, не совпадают как левая и правая рука человека. Асимметричные молекулы в химии называют стереоизомерами, а само свойство зеркальной асимметрии носит название киральности или хиральности (от греческого слова «кир» - рука). Так вот, выяснилось, что в природе хиральностью обладают и «живые», и «неживые» молекулы, но «живые» всегда только хиральны, причем «неживые» хиральные молекулы равновероятно встречаем и в левом, и в правом варианте, а «живые» - только или в левом, или в правом. В этом смысле молекулы живых организмов хирально чисты. Так, ориентация ДНК-спирали всегда правая. В свое время Л. Пастер, а затем и В.И. Вернадский предлагали на этом принципиальном различии провести раздел между живой и неживой природой. Предполагают, что основополагающим признаком возникновения и развития жизни и является способность живых организмов извлекать и конструировать из симметричных и хирально нечистых молекул окружающей среды хирально чистые молекулы, необходимые для живого организма. Примером может служить извлечение растениями из симметричных молекул воды и углекислого газа в процессе фотосинтеза асимметричных молекул крахмала и сахара. Наряду с другими питательными веществами эти молекулы поступают в пище живых организмов и из них образуются уже хирально чистые молекулы. Если хиральность молекул веществ пищи изменится на противоположную, то эти вещества окажутся для живого организма биологическим ядом, они отторгаются организмом, ведут его к гибели. Это достаточно характерный пример того, как исходя из симметрийных представлений физики мы можем объяснить, если хотите, происхождение живой материи и даже дать рекомендации практической медицине.

В общем смысле мы можем считать, что и возникновение жизни в целом связано со спонтанным нарушением имевшейся до того в природе зеркальной симметрии. Предполагается, что асимметрия возникла скачком в результате Большого Биологического взрыва, по аналогии с БВ, в результате которого образовалась Вселенная, под действием радиации, температуры, полей и т.д. и нашла свое отражение в генах живых организмов. Этот процесс по существу также является процессом самоорганизации, который мы рассматривали в подразд. 1.7. В какой-то точке бифуркации произошел и самоорганизующий акт возникновения уже живой материи.

Уместно теперь связать симметрию с энтропией живых организмов. Переход вещества на более высокую степень организации, упорядоченности, как мы уже отмечали, снижает энтропию как меру хаотичности. Но наибольшей симметрией обладает как раз равновесное хаотическое состояние. Значит, уменьшение энтропии неизбежно приводит к уменьшению симметрии, т.е. увеличению асимметрии живых организмов. Чем выше уровень организации материи, тем меньше энтропия и симметрия. Но для снижения энтропии живых организмов как открытых систем, обменивающихся энергией и материей (пища и отправления) с окружающей средой, необходима энергия, причем значительная, которая, как мы увидим далее, вырабатывается в соответствующих частях клеток (митохондриях) живых организмов за счет пищи, т.е. поглощения энергии внешней среды (Солнца и биосферы).

Можно образно сказать, что мы забираем от природы более организованную структурированную материю, обладающую меньшей энтропией, т.е. подпитываем себя негэнтропией (отрицательной энтропией), а отдаем ей неструктурированную материю, обладающую большей энтропией. «Питаемся» так сказать, с энергетической физической точки зрения, отрицательной энтропией, а отдаем положительную энтропию. И когда в естественных условиях этот баланс нарушается, то наступает некоторое динамическое равновесие - обмен энтропией между человеком и окружающей средой стабилизируется, энтропия системы человек - окружающая среда возрастает, и живой организм гибнет (энтропия его возросла). Поэтому биологическая смерть организма - это рост энтропии до ее уровня в окружающей среде. Повышение же энергетического потенциала в живом организме при «нормальном» обмене энтропией его с окружающей средой увеличивает химическую активность клеток и дает возможность самовоспроизведения и развития.

Можно сказать, что по мере упорядочения живых организмов, их усложнения в ходе развития жизни асимметрия все больше и больше превалирует на симметрией, вытесняя ее из биохимических и физиологических процессов. Однако и здесь имеет место динамический процесс: симметрия и асимметрия в функционировании живых организмов тесно связаны. Внешне человек и животные симметричны, однако их внутреннее строение существенно асимметрично. Если у низших биологических объектов, например низших растений, размножение идет симметрично, то у высших имеет место явная асимметрия - разделение полов, где каждый пол вносит в процесс самовоспроизведения свойственную только ему генетическую информацию. Так устойчивое сохранение наследственности есть проявление в известном смысле симметрии, а в изменчивости проявляется асимметрия. В целом же глубокая внутренняя связь симметрии и асимметрии в живой природе обусловливает ее возникновение, существование и развитие.

Можно задаться вопросом, есть ли другие виды симметрии и связанные с ними законы сохранения. В чем состоит глубокое значение законов сохранения электрического заряда, лептонного и барионного чисел, странностей, изотопического спина и т.д.? Как это связано со свойствами абстрактного пространства? В чем смысл наличия «черных дыр» как неких «пропускных пунктов» из нашего пространства, мира, в другой антимир? К сожалению, пока на эти вопросы мы ответа не имеем, хотя и хорошо, что современная наука дает возможность их задавать.

Правда, по поводу задаваемых вопросов существует следующий физический анекдот. Паули очень любил задавать вопросы, на которые не всегда можно найти правильные ответы (их вообще могло и не быть!). Когда он умер, то продолжал свое любимое занятие на том свете. И там никто не мог ответить на его вопросы. Тогда он решил обратиться к Богу. Господь терпеливо и внимательно выслушал его и ответил: «Вся трудность, Паули, в том, что Вы задаете не те вопросы».

Симметрия и асимметрия в природе

Симметрия и асимметрия являются объективными свойствами природы, одними из фундаментальных в современном естествознании. Симметрия и асимметрия имеют универсальный, общий характер как свойство материального мира.

Симметрия (от греч. symmetria – соразмерность, порядок, гармония) является всеобщим свойством природы. Представление о симметрии у человека складывалось тысячелетиями. Термин «симметрия» фигурирует в представлениях человека как элемент чего-то «правильного», прекрасного и совершенного. В своих раздумьях над картиной мироздания человек определял симметрию как магическое качество природы, ее целесообразность, совершенство и старался отразить эти свойства в музыке, поэзии, архитектуре. В определенной мере симметрия выражает степень упорядоченности системы. В связи с этим имеется тесная корреляционная связь энтропии как меры неупорядоченности с симметрией: чем выше степень организованности вещества, тем выше симметрия и ниже энтропия.

Степень симметрии природных систем отражается в симметрии математических уравнений, законов, отображающих их состояние, в неизменности каких-либо их свойств по отношению к преобразованиям симметрии.

Симметрия – это понятие, отражающее существующий в природе порядок, пропорциональность и соразмерность между элементами какой-либо системы или объекта природы, упорядоченность, равновесие системы, устойчивость, то есть некий элемент гармонии.

Асимметрия – понятие, противоположное симметрии, отражающее разупорядочение системы, нарушение равновесия, что связано с изменением и развитием системы.

Из определений симметрии и асимметрии следует, что развивающаяся динамическая система должна быть обязательно несимметричной и неравновесной.

Современное естествознание представлено целой иерархией симметрий, которая отражает свойства иерархии уровней организации материи. Выделяют различные формы симметрий: калибровочные, пространственно-временные, изотопические, перестановочные, зеркальные и т. д. Все эти виды симметрий подразделяются на внешние и внутренние.

Внутреннюю симметрию невозможно наблюдать, она скрыта в математических уравнениях и законах, выражающих состояние исследуемой системы. Пример тому – уравнение Максвелла, описывающее взаимосвязь электрических и магнитных явлений, или теория гравитации Эйнштейна, связывающая свойства пространства, времени и тяготения.

Внешняя симметрия (пространственная или геометрическая) представлена в природе большим многообразием. Это симметрия кристаллов, молекул, живых организмов.

Для чего нужна симметрия живому и как она возникла?

Живые организмы формировали свою симметрию в процессе эволюции. Зародившиеся в водах океана, первые живые организмы имели правильную сферическую форму. Внедрение организмов в другие среды заставляло их адаптироваться к новым специфическим условиям. Один из способов такой адаптации – симметрия на уровне физической формы. Симметричное расположение частей органов тела обеспечивает живым организмам равновесие при движении и функционировании, жизнестойкость и адаптацию. Довольно симметричны внешние формы крупных животных, человека. Растительный мир организмов также наделен симметрией, что связано с борьбой за свет, физической устойчивостью к полеганию (закон всемирного тяготения). Например, конусообразная крона ели имеет строго вертикальную ось симметрии – вертикальный ствол, утолщенный книзу для устойчивости. Отдельные ветви симметрично расположены по отношению к стволу, а форма конуса способствует рациональному использованию кроной светового потока солнечной энергии, увеличивает устойчивость. Таким образом, благодаря притяжению и законам естественного отбора ель выглядит эстетически красиво и «построена» рационально. Внешняя симметрия насекомых и животных помогает им держать равновесие при движении, извлекать максимум энергии из окружающей среды и рационально ее использовать.

В физических и химических системах симметрия приобретает еще более глубокий смысл. Так, наиболее устойчивы молекулы, обладающие высокой симметрией (инертные газы). Симметрия молекул определяет характер молекулярных спектров. Высокая симметрия характерна для кристаллов. Кристаллы – это симметричные тела, их структура определяется периодическим повторением в трех измерениях элементарного атомного мотива.

Асимметрия также широко распространена в мире.

Внутреннее расположение отдельных органов в живых организмах часто асимметрично. Например, сердце расположено слева у человека, печень – справа и т. д. Л. Пастер, французский микробиолог и иммунолог, выделил левые и правые кристаллы винной кислоты. Молекула ДНК асимметрична – ее спираль всегда закручена вправо. Все аминокислоты и белки, входящие в состав живых организмов, способны отклонять поляризованный луч света влево.

В отличие от молекул неживой природы, где левые и правые молекулы встречаются часто, то есть носят в основном симметричный характер, молекулы органических веществ характеризуются ярко выраженной асимметрией. Придавая большое значение асимметрии живого, В. И. Вернадский предполагал, что именно здесь проходит тонкая граница между химией живого и неживого. Л. Пастер также, основываясь на этих признаках, провел границу между живым и неживым. Следует также отметить, что живые организмы (растения) в процессе жизнедеятельности поглощают из окружающей среды (почвы) в значительной степени химические соединения минеральной пищи, молекулы которой симметричны и в своем организме превращают их в асимметричные органические вещества: крахмал, белки глюкозу и т. д. Симметрия молекул пищевых веществ живого организма согласуется с симметрией молекул самого организма. В противном случае пища будет несовместимой (ядовитой).

Структура компонентов клетки также асимметрична, что имеет большое значение для ее обмена веществ, энергетической обеспеченности, а также способствует более высокой скорости протекания биохимических реакций.

Симметрия и асимметрия – это две полярные характеристики объективного мира. Фактически в природе нет чистой (абсолютной) симметрии или асимметрии. Эти категории – противоположности, которые всегда находятся в единстве и борьбе. Там, где ослабевает симметрия, возрастает асимметрия, и наоборот. На разных уровнях развития материи ей свойственна то симметрия, то асимметрия. Однако эти две тенденции едины, а их борьба носит абсолютный характер. Эти категории тесно связаны с понятиями устойчивости и неустойчивости систем, порядка и беспорядка, организации и дезорганизации, отражающими свойства систем и динамику развития, а также взаимосвязь между динамическими и статическими законами.



Полагая, что равновесие есть состояние покоя и симметрии, а асимметрия приводит к движению и неравновесному состоянию, можно считать, что понятие равновесия играет в биологии не менее важную роль, чем в физике. Принцип устойчивости термодинамического равновесия живых систем характеризует специфику биологической формы движения материи. Именно устойчивое динамическое равновесие (асимметрия) является ключевым принципом постановки и решения проблемы происхождения жизни.

Симметрия

Асимметрия

Ритм – это чередование каких-либо элементов в определенной последовательности.

Ритм – одно из средств, наиболее часто употребляемых для создания гармоничной композиции. Это средство отражает связь человеческой природы и деятельности, в том числе и творческой, с мирозданием...

Действительно, разве можно отрицать, что многие процессы жизнедеятельности человека протекают циклично? Человек ощущает ритмы сердца, дыхания, ритмично двигается при ходьбе, беге, танце. Любая трудовая деятельность связана с ритмичными движениями, то есть с повторами. Важнейшие признаки ритма – это повторяемость явлений, элементов или форм, закономерность их чередования. «Ритм» буквально означает «такт, мерность» (от греческого «рафмос»).

Ритмы можно разделить на:

- метрический или монотонный (повторение без изменения);

- направленный (к чередованию добавляются закономерные изменения);

- повторение ;

- ритм с группированием .

По характеру линий ритм можно разделить на прямолинейный и криволинейный .

Ритм бывает простым , когда меняется какая-то одна закономерность (меняться форма, цвет, фактура или расстояние между элементами), и сложным , когда в ритме изменения происходят сразу по нескольким параметрам. Например, меняется конфигурация формы и происходит насыщение по цвету, или изменяется расстояние между элементами и одновременно уменьшается форма, которая также изменяет свою фактурную характеристику.

Для метрических композиций характерна статика. Статика – это состояние покоя, равновесия. Ярким примером метрического ряда служит орнамент.

Хотя метрический повтор сам по себе уже закономерность, но это еще не гармония. Если бесконечно повторять одну и ту же ноту в музыке или строить архитектурную композицию на повторении только одного элемента, гармония не возникает. По-видимому, мы начинаем воспринимать повтор как некий порядок с момента, когда перестаем мгновенно улавливать количество элементов. С этой точки зрения и пять повторов еще не ряд, поскольку мы подсознательно считаем его элементы. Когда же количество повторов переходит за шесть, семь, мы перестаем считать их, воспринимая элементы не в отдельности, а как группу.


Однако природа не терпит однообразия и монотонности. Нельзя найти двух одинаковых деревьев или двух одинаковых камушков - при всем своем сходстве и общих признаках они все-таки различаются определенными параметрами. Наше восприятие окружающей действительности устроено точно так же - нас раздражает монотонный стук падающих капель из крана, навевает скуку ровный, без изъянов и характерных деталей забор, выводит из себя бесконечно длинный и монотонный бразильский сериал со своими повторами сюжетной схемы помногу раз...

Поэтому любой ритм в дизайне следует изменять перед самой той границей, когда он начинает становиться монотонным. Все хорошо в меру, и эту меру хорошо бы знать или чувствовать. Самый простой способ постичь это - поставить себя на место зрителя.

Вполне возможно использования в композициях сочетания метра и ритма. Метрическое повторение ритмических рядов помогает создавать весьма оригинальные произведения. Казалось бы, используя одно и то же средство, нельзя добиться такого большого разнообразия решений. Но, например, художник В. Вазарели всем своим творчеством доказывает обратное. Каждая его работа своеобразна и неповторима.

Любой сбой в ритме привлекает внимание, нарушая ритм можно расставить нужные акценты.

Ритм является одной из «волшебных палочек», с помощью которых можно передать движение на плоскости.

Почему же ритм передает движение? Это связано с особенностью нашего зрения. Взгляд, переходя от одного изобразительного элемента к другому, ему подобному, сам как бы участвует в движении.

Симметрия (от греч. тождество, подобие, соответствие) – это соответствие фигуры относительно оси симметрии, точки или плоскости.

Асимметрия – нарушение равновесия, баланса

Симметрия отвечает одному из самых глубоких законов природы – стремлению к устойчивости. Основная черта симметричной композиции – равновесие. Симметрия гармонична, но если всякое изображение делать симметричным, то через некоторое время мы будем окружены благополучными, но однообразными произведениями. Во многих случаях надо сознательно нарушать симметрию в композиции, иначе трудно передать движение, изменение, противоречие.

С симметрией мы встречаемся везде - в природе, технике, искусстве, науке. Отметим, например, симметрию, свойственную бабочке и кленовому листу, симметрию форм автомобиля и самолета, симметрию в ритмическом построении стихотворения и музыкальной фразы, симметрию атомной структуры молекул и кристаллов.

Понятие симметрии проходит через всю многовековую историю человеческого творчества. Оно встречается уже у истоков человеческого знания, его широко используют все без исключения направления современной науки. Принципы симметрии играют важную роль в физике и математике, химии и биологии, технике и архитектуре, живописи и скульптуре, поэзии и музыке. Законы природы, управляющие неисчерпаемой в своем многообразии картиной явлений, в свою очередь, подчиняются принципам симметрии.

Простейший вид симметрии - зеркальная . Предмет или фигура, которые можно разделить плоскостью на две половины так, чтобы эти половины при наложении друг на друга совпали между собой, имеет зеркальную симметрию. Такая симметрия присуща, например, человеческому телу, телам животных и многому другому. Зеркальная симметрия способствует созданию впечатления уравновешенности и покоя, так как она делает обе половины изображения равноценными для нашего взгляда.

Иной вид симметрии присутствует в фигурах, которые совмещаются сами с собой без помощи зеркального отражения, а посредством поворота вокруг некоторой оси, перпендикулярной к плоскости изображения. Это - осевая симметрия , а число таких совмещений на протяжении полного кругового оборота фигуры называется порядком оси. Осевая симметрия может обладать порядком от второго и до бесконечности. Фигур с осевой симметрией бесконечно много, но все они четко организованы и равномерно распределены вокруг единого для них центра. Все углы поворотов должны быть равны. Осевая симметрия нередко встречается в природе и широко распространена в орнаментах. В первую очередь, к фигурам с осевой симметрией относятся розетки. Изображение, обладающее осевой симметрией производит впечатление движения, вращения вокруг своего центра.

Часто можно видеть розетки не только с осевой симметрией, но и с зеркальной. Подобные формы гораздо уравновешеннее и спокойнее предыдущих. Такая форма представляется более законченной, так как она не выражает вращения, а от ее центра расходятся равные элементы. Возможно поэтому розетки с двумя этими видами симметрии приобрели наибольшее распространение.

Вдоль некой линии могут быть равномерно расположены одинаковые мотивы. Так образуется линейный орнамент, или бордюр, при помощи параллельного переноса, который можно продолжить до бесконечности в обе стороны по направлению линии. Это - еще один вид симметрии: если мы весь орнаментальный ряд сдвинем вдоль осевой линии на один мотив, то каждая из фигур наложится на место соседней, то есть бордюр совместится сам с собой.

В искусстве орнамента нередко используется заполнение плоскости одинаковыми прямолинейными фигурами. В математике такое замощение называется паркетом (в дизайне - сетчатые орнаменты ). Известно, что только два рода фигур - различные параллелограммы (включая прямоугольники, квадраты и ромбы) и шестиугольники с попарно параллельными сторонами заполняют плоскость сплошь, без пропусков и наложений, с помощью одних лишь переносов, сохраняя ориентацию.

Виды симметрии – (зеркальная, поворотная, трансляционная, паркетная, комбинированная)

Техника и Комбинации из всей предыдущей программы

2. Тай-Сабаки: 4 минуты

3. Дзюдо: 5 поединков

4. Грэпплинг: 5 схваток

САНДАН

(Черный пояс с тремя золотыми полосами)

2. Тай-Сабаки: 5 минут

3. Дзюдо: 5 поединков

4. Грэпплинг: 5 схваток

Симме́три́я (др.-греч. συμμετρία «соразмерность», от μετρέω - «меряю»), в широком смысле - соответствие, неизменность (инвариантность), проявляемые при каких-либо изменениях, преобразованиях (например: положения, энергии, информации и др.).

Симметрия рассматривается в различных аспектах: как философская и эстетическая категория, как математическая закономерность, как категория строения физических тел и создаваемых человеком предметов, как свойство и как средство композиции.

Понятие симметрия отражает фундаментальное свойство материального мира и в настоящее время используется многими науками, изучающими законы построения и организации мертвой и живой природы. Это фундаментальное свойство природы, проявляющееся в физике, математике, биологии, с ним связаны законы сохранения энергии, свойства элементарных частиц, строение атомов и молекул, структура кристаллов, строение белков. Симметрия характеризует постоянство определенных свойств объекта или явления относительно каких-либо изменений. Симметрия – идея, посредством которой человек на протяжении веков пытался постичь и создать порядок, красоту и совершенство.

В современной научной и художественной практике симметрию и асимметрию рассматривают как средство внешней организации формы, а также как метод или принцип морфологического строения отдельных форм, явлений и даже процессов.

В искусстве понятия симметрии и асимметрии связываются с пространственным аспектом художественной формы, поэтому наибольшее распространение понятий и принципов симметрии известно в области архитектуры, дизайна, орнамента и других видов декоративно-прикладного искусства.

Симметрия - определенный порядок, математическая закономерность, с которой располагаются повторяющиеся предметы относительно друг друга на плоскости или в пространстве.

Она означает такое соотношение между элементам композиции, когда они повторяют и уравновешивают друг друга. Симметрия - это полное равенство одной половины це­лого другой половине, полное соответствие по расположению и величине всех входящих в форму деталей, линий и других элементов по отношению к оси симмет­рии, это отражение левого в правом, верхнего в нижнем и т. п..



В искусстве симметрия является одним из наиболее ярких компо­зиционных средств, с помощью которого форма органи­зуется, приводится к порядку, устойчивости и стабиль­ности. Как средство композиции симметрия используется очень давно. Художники разных эпох использовали симметричное построение картины. В симметричной композиции люди или предметы расположены почти зеркально по отношению к центральной оси картины.Симметричными были многие древние мозаики. Живописцы эпохи Возрождения часто строили свои композиции по законам симметрии. Такое построение позволяет достигнуть впечатления покоя, величественности, особой торжественности и значимости событий. В разные времена она понималась по-разному - от строгих канонов до такой свободной трактовки, когда за симметрией сохранялась лишь роль организующего начала.

Симметрия в искусстве основана на реальной действительности, изобилующей симметрично устроенными формами. Например, симметрично устроены фигура человека, бабочка, снежинка и многое другое.

Симметрия предполагает одинаковость расположения элементов относительно точки, оси или плоскости. Эти вспомогательные геометрические элементы, с помощью которых осуществляются симметрические преобразования, называются элементами симметрии .

· плоскость симметрии - плоскость, делящая объект на две равные (зеркально симметричные) половины;

· ось симметрии - прямая линия, при повороте вокруг которой на некоторых угол, меньший 360 о, объект совпадает сам с собой;

· центр симметрии - точка, делящая пополам все прямые линии, соединяющие подобные точки объекта.

Обычно через центр симметрии проходят оси симметрии, а через ось симметрии - плоскости симметрии, однако существуют тела и фигуры, у которых при наличии центра симметрии нет ни осей, ни плоскостей симметрии, а при наличии оси симметрии отсутствуют плоскости симметрии.

Закономерность расположения частей симметричной фигуры заключается в том, что они могут обмениваться местами и совмещаться между собой относительно элементов симметрии с помощью операций или симметричных преобразований.

Основными симметричными преобразованиями являются:

· отражение;

· поворот;

· параллельный перенос.



Понравилась статья? Поделитесь ей
Наверх