Межзвёздные полёты. Что мешает межзвездным полетам

Допустим, Земле конец. Солнце готово вот-вот взорваться, к планете приближается астероид размером с Техас. Крупные города населены зомби, а в сельской местности фермеры усиленно сажают кукурузу, потому что другие посевы гибнут. Нужно срочно покидать планету, но вот беда - в районе Сатурна никаких червоточин не обнаружено, а сверхсветовых двигателей из далёкой-далёкой галактики не завезли. До ближайшей звезды - больше четырёх световых лет. Сможет ли человечество достичь её, располагая современными технологиями? Ответ не столь очевиден.

Вряд ли кто-то станет утверждать, что глобальная экологическая катастрофа, которая поставит под угрозу существование всей жизни на Земле, может случиться лишь в кино. На нашей планете не раз происходили массовые вымирания, во время которых гибло до 90% существующих видов. Земля переживала периоды глобального оледенения, сталкивалась с астероидами, проходила через всплески вулканической активности.

Конечно, даже во время самых страшных катастроф жизнь никогда не исчезала полностью. Но того же не скажешь о господствовавших на тот момент видах, которые вымирали, освобождая дорогу другим. А кто сейчас господствующий вид? Вот-вот.

Вполне вероятно, что возможность покинуть родной дом и отправиться к звёздам в поисках нового сможет когда-нибудь спасти человечество. Однако вряд ли стоит уповать, что какие-нибудь космические благодетели откроют нам дорогу к звёздам. Стоит прикинуть, каковы наши теоретические возможности добраться до звёзд своими силами.

Космический ковчег

В первую очередь на ум приходят традиционные двигатели на химической тяге. В настоящий момент четырём земным аппаратам (все они были запущены ещё в 1970-х) удалось развить третью космическую скорость, достаточную для того, чтобы навсегда покинуть Солнечную систему.

Наиболее быстрый из них, «Вояджер-1», за прошедшие с момента запуска 37 лет удалился от Земли на расстояние в 130 а.е. (астрономических единиц, то есть 130 расстояний от Земли до Солнца). Каждый год аппарат преодолевает примерно 3,5 а.е. Расстояние до Альфы Центавра - 4,36 световых лет, или 275 725 а.е. С такой скоростью аппарату потребуется почти 79 тысяч лет, чтобы добраться до соседней звезды. Мягко говоря, ждать придётся долго.

Фото Земли (над стрелочкой) с расстояния 6 миллиардов километров, сделанное «Вояджером-1». Это расстояние космический аппарат прошёл за 13 лет.

Можно найти способ лететь быстрее, а можно просто смириться и лететь несколько тысяч лет. Тогда конечной точки достигнут лишь далёкие потомки тех, кто отправился в путешествие. Именно в этом заключается идея так называемого корабля поколений - космического ковчега, представляющего собой рассчитанную на длительное путешествие замкнутую экосистему.

В фантастике есть множество различных сюжетов о кораблях поколений. О них писали Гарри Гаррисон («Пленённая Вселенная»), Клиффорд Саймак («Поколение, достигшее цели»), Брайан Олдисс («Без остановки»), из более современных писателей - Бернард Вербер («Звёздная бабочка»). Довольно часто далёкие потомки первых обитателей вообще забывают о том, откуда они вылетели и в чём цель их путешествия. Или даже начинают считать, что весь существующий мир сводится к кораблю, как, например, рассказывается в романе Роберта Хайнлайна «Пасынки Вселенной». Другой интересный сюжет показан в восьмом эпизоде третьего сезона классического «Звёздного пути», где экипаж «Энтерпрайза» пытается предотвратить столкновение корабля поколений, чьи обитатели забыли о своей миссии, и обитаемой планеты, к которой он направлялся.

Плюс корабля поколений заключается в том, что этот вариант не потребует принципиально новых двигателей. Однако нужно будет разработать самодостаточную экосистему, которая сможет существовать без поставок извне в течение многих тысяч лет. И не стоит забывать о том, что люди могут попросту поубивать друг друга.

Проведённый в начале 1990-х под замкнутым куполом эксперимент «Биосфера-2» продемонстрировал ряд опасностей, которые могут подстерегать людей при таких путешествиях. Это и быстрое разделение коллектива на несколько группировок, враждебно настроенных друг к другу, и неконтролируемое размножение вредителей, которое вызвало недостаток кислорода в воздухе. Даже обычный ветер, как оказалось, играет важнейшую роль - без регулярного раскачивания деревья становятся хрупкими и ломаются.

Решить многие проблемы длительного полёта поможет технология, погружающая людей в длительный анабиоз. Тогда ни конфликты не страшны, ни скука, да и система жизнеобеспечения потребуется минимальная. Главное - обеспечить её энергией на длительный срок. Например, с помощью ядерного реактора.

С темой корабля поколений связан весьма интересный парадокс под названием Wait Calculation («Расчётное ожидание»), описанный учёным Эндрю Кеннеди. Согласно этому парадоксу, в течение некоторого времени после отправки первого корабля поколений на Земле могут быть открыты новые, более быстрые способы передвижения, что позволит стартующим позже кораблям обогнать первоначальных поселенцев. Так что не исключено, что к моменту прибытия пункт назначения уже будет перенаселён далёкими потомками колонизаторов, которые отправились позднее.

Установки для анабиоза в фильме «Чужой».

Верхом на ядерной бомбе

Предположим, нас не устраивает, что до звёзд долетят потомки наших потомков, и мы хотим сами подставить лицо лучам чужого солнца. В этом случае не обойтись без космического корабля, способного разогнаться до скоростей, которые доставят его к соседней звезде за время меньше одной человеческой жизни. И тут поможет старая добрая ядерная бомба.

Идея подобного корабля появилась ещё в конце 1950-х. Космический аппарат предназначался для полётов внутри Солнечной системы, однако его вполне можно было бы использовать и для межзвёздных путешествий. Принцип его работы таков: за кормой устанавливают мощную бронированную плиту. Из космического аппарата в направлении, противоположном полёту, равномерно выбрасываются маломощные ядерные заряды, которые подрываются на небольшом (до 100 метров) расстоянии.

Заряды сконструированы таким образом, чтобы большая часть продуктов взрыва направлена в хвост космического корабля. Отражающая плита принимает на себя импульс и передаёт его кораблю через систему амортизаторов (без неё перегрузки будут губительны для экипажа). От повреждения световой вспышкой, потоками гамма-излучения и высокотемпературной плазмой отражающую плиту защищает покрытие из графитовой смазки, которое заново распыляется после каждого подрыва.

Проект NERVA - пример ядерного ракетного двигателя.

На первый взгляд подобная схема кажется безумной, но она вполне жизнеспособна. Во время одного из ядерных испытаний на атолле Эниветок в 9 метрах от центра взрыва были размещены покрытые графитом стальные сферы. После испытания они были найдены неповреждёнными, что доказывает эффективность графитовой защиты для корабля. Но подписанный в 1963 году «Договор о запрещении испытаний ядерного оружия в атмосфере, космическом пространстве и под водой» поставил крест на этой идее.

Артур Кларк хотел оснастить космический корабль Discovery One из фильма «Космическая одиссея 2001 года» чем-то вроде ядерно-взрывного двигателя. Однако Стэнли Кубрик попросил его отказаться от идеи, испугавшись, что зрители сочтут это пародией на его фильм «Доктор Стрейнджлав, или Как я перестал бояться и полюбил атомную бомбу».

Какую же скорость можно развить с помощью серии ядерных взрывов? Больше всего сведений существует о проекте взрыволёта «Орион», который разрабатывался в конце 1950-х в США при участии учёных Теодора Тейлора и Фримена Дайсона. 400 000-тонный корабль планировалось разогнать до 3,3% скорости света - тогда полёт до системы Альфы Центавра продлился бы 133 года. Однако, согласно нынешним оценкам, подобным способом можно разогнать корабль до 10% скорости света. В таком случае полёт продлится примерно 45 лет, что позволит экипажу дожить до прибытия в пункт назначения.

Конечно, постройка такого корабля - весьма недешёвое дело. По оценке Дайсона, на создание «Ориона» потребовалось бы примерно 3 триллиона долларов в современных ценах. Но если мы узнаем, что нашей планете будет грозить глобальная катастрофа, то, вероятно, именно корабль с ядерно-импульсным двигателем станет последним шансом человечества на выживание.

Газовый гигант

Дальнейшим развитием идей «Ориона» стал проект беспилотного корабля «Дедал», который разрабатывался в 1970-х годах группой учёных из Британского межпланетного общества. Исследователи задались целью спроектировать беспилотный космический аппарат, способный в течение человеческой жизни достичь одной из ближайших звёзд, провести научные исследования и передать на Землю полученную информацию. Главным условием исследования было использование в проекте либо существующих, либо предвидимых в ближайшее время технологий.

Целью полёта была выбрана находящаяся от нас на расстоянии 5,91 светового года звезда Барнарда - в 1970-е годы считалось, что вокруг этой звезды вращается несколько планет. Сейчас мы знаем, что в данной системе нет планет. Разработчики «Дедала» нацелились на создание двигателя, который мог бы доставить корабль до пункта назначения за время, не превышающее 50 лет. В итоге они пришли к идее двухступенчатого аппарата.

Необходимое ускорение обеспечивала серия маломощных ядерных взрывов, происходящих внутри специальной двигательной установки. В качестве топлива использовались микроскопические гранулы из смеси дейтерия с гелием-3, облучаемые потоком высокоэнергетических электронов. Согласно проекту, в двигателе должно было происходить до 250 взрывов в секунду. Соплом служило мощное магнитное поле, создаваемое силовыми установками корабля.

По плану первая ступень корабля работала в течение двух лет, разгоняя корабль до 7% скорости света. После этого «Дедал» сбрасывал отработанную двигательную установку, избавляясь от большей части своей массы, и запускал вторую ступень, которая позволяла ему разогнаться до окончательной скорости в 12,2% световой. Это позволило бы достичь звезды Барнарда через 49 лет после запуска. Ещё 6 лет ушло бы на передачу сигнала на Землю.

Полная масса «Дедала» составляла 54 тысячи тонн, из которых 50 тысяч приходилось на термоядерное горючее. Однако предполагаемый гелий-3 чрезвычайно редко встречается на Земле - зато его полно в атмосферах газовых гигантов. Поэтому авторы проекта предполагали добыть гелий-3 на Юпитере с помощью «плавающего» в его атмосфере автоматизированного завода; на весь процесс добычи ушло бы примерно 20 лет. На той же орбите Юпитера предполагалось осуществить окончательную сборку корабля, который бы затем стартовал к другой звёздной системе.

Самым сложным элементом во всей концепции «Дедала» была именно добыча гелия-3 из атмосферы Юпитера. Для этого нужно было долететь до Юпитера (что тоже не так-то легко и быстро), основать базу на одном из спутников, построить завод, где-то хранить топливо… И это уже не говоря о мощных радиационных поясах вокруг газового гиганта, которые дополнительно усложнили бы жизнь технике и инженерам.

Ещё одна проблема состояла в том, что «Дедал» не имел возможности погасить скорость и выйти на орбиту звезды Барнарда. Корабль и выпущенные им зонды просто бы прошли мимо звезды по пролётной траектории, преодолев всю систему за несколько дней.

Сейчас международная группа из двадцати учёных и инженеров, действующая под эгидой Британского межпланетного сообщества, работает над проектом корабля «Икар». «Икар» - своеобразный «римейк» Дедала, учитывающий накопленные за последние 30 лет знания и технологии. Одно из основных направлений работы - поиск других видов топлива, которое можно было бы добыть и на Земле.

Со скоростью света

Можно ли разогнать космический корабль до скорости света? Эту задачу можно решить несколькими способами. Наиболее перспективный из них - аннигиляционный двигатель на антиматерии. Принцип его действия заключается в следующем: антиматерия подаётся в рабочую камеру, где она входит в соприкосновение с обычным веществом, порождая управляемый взрыв. Ионы, возникшие в процессе взрыва, выбрасываются через сопло двигателя, создавая тягу. Из всех возможных двигателей аннигиляционный теоретически позволяет достичь наибольших скоростей. Взаимодействие материи и антиматерии высвобождает колоссальное количество энергии, а скорость истечения образующихся в ходе этого процесса частиц близка к световой.

Но тут встаёт вопрос добычи топлива. Само по себе антивещество уже давно перестало быть фантастикой - учёным впервые удалось синтезировать антиводород ещё в 1995 году. Но добыть его в достаточных количествах невозможно. В настоящее время антиматерию можно получить лишь с помощью ускорителей частиц. При этом количество создаваемого ими вещества измеряется мизерными долями граммов, а его стоимость составляет астрономические суммы. На одну миллиардную грамма антивещества учёным из Европейского центра ядерных исследований (того самого, где создали Большой адронный коллайдер) пришлось потратить несколько сотен миллионов швейцарских франков. С другой стороны, стоимость производства будет постепенно уменьшаться и в будущем может достичь куда более приемлемых значений.

Кроме того, придётся придумать способ, позволяющий хранить антивещество - ведь при соприкосновении с обычной материей оно мгновенно аннигилируется. Одно из решений - охлаждать антивещество до сверхнизких температур и использовать магнитные ловушки, не позволяющие ему соприкасаться со стенками бака. На данный момент рекордное время хранения антивещества составляет 1000 секунд. Не годы, конечно, но с учётом того, что в первый раз антивещество удалось удержать лишь на 172 миллисекунды, прогресс есть.

И даже быстрее

Многочисленные фантастические фильмы приучили нас к тому, что добраться до других звёздных систем можно куда быстрее, чем за несколько лет. Достаточно включить варп-двигатель или гиперпространственный привод, откинуться поудобнее в кресле - и уже через несколько минут оказаться на другом краю галактики. Теория относительности запрещает путешествия со скоростями, превышающими скорость света, но в то же время оставляет лазейки, позволяющие обойти эти ограничения. Если бы могли разорвать или растянуть пространство-время, то смогли бы путешествовать быстрее света, не нарушая никаких законов.

Разрыв пространства более известен как кротовая нора, или червоточина. Физически она представляет собой тоннель, связывающий две удалённые области пространства-времени. Почему бы не использовать такой тоннель для путешествия в дальний космос? Дело в том, что создание подобной кротовый норы требует наличия в разных точках вселенной двух сингулярностей (это то, что находится за горизонтом событий чёрных дыр, - фактически гравитация в чистом виде), которые смогут разорвать пространство-время, создав тоннель, позволяющий путешественникам «срезать» путь через гиперпространство.

Кроме того, для поддержания подобного тоннеля в устойчивом состоянии необходимо, чтобы он был заполнен экзотической материей с отрицательной энергией, - а существование подобной материи до сих пор не доказано. В любом случае, создать кротовую нору по силам лишь сверхцивилизации, которая на много тысяч лет будет опережать нынешнюю в развитии и чьи технологии с нашей точки зрения будут похожи на волшебство.

Второй, более доступный вариант - «растягивание» пространства. В 1994 году мексиканский физик-теоретик Мигель Алькубьерре предположил, что можно изменить его геометрию, создав волну, сжимающую пространство впереди корабля и расширяющую его сзади. Таким образом звездолёт окажется в «пузыре» искривлённого пространства, которое само будет двигаться быстрее света, благодаря чему корабль не нарушит фундаментальных физических принципов. По словам самого Алькубьерре, .

Правда, сам учёный счёл, что реализовать подобную технологию на практике будет невозможно, так как для этого потребуется колоссальное количестве массы-энергии. Первые вычисления давали значения, превышающие массу всей существующей Вселенной, последующие уточнения уменьшили её до «всего лишь» юпитерианской.

Но в 2011 году Гарольд Уайт, возглавляющий исследовательскую группу Eagleworks при NASA, провёл расчёты, которые показали, что если изменить некоторые параметры, то для создания пузыря Алькубьерре может потребоваться куда меньше энергии, чем считалось ранее, и перерабатывать целую планету уже не потребуется. Сейчас группа Уайта прорабатывает возможность «пузыря Алькубьерре» на практике.

Если у экспериментов будут результаты, то это станет первым маленьким шажком к тому, чтобы создать двигатель, позволяющий путешествовать в 10 раз быстрее скорости света. Разумеется, космический аппарат, использующий пузырь Алькубьерре, отправится в путешествие через много десятков, а то и сотен лет. Но сама перспектива того, что такое действительно возможно, уже захватывает дух.

Полёт «Валькирии»

Практически все предлагаемые проекты звездолётов имеют один существенный недостаток: они весят десятки тысяч тонн, и их создание требует огромного количество запусков и сборочных операций на орбите, что увеличивает стоимость постройки на порядок. Но если человечество всё же научится получать большое количество антиматерии, у него появится альтернатива этим громоздким конструкциям.

В 1990-х годах писатель Чарльз Пелегрино и физик Джим Пауэлл предложили проект звездолёта, известный как «Валькирия». Его можно описать как нечто вроде космического тягача. Корабль представляет собой связку из двух аннигиляционных двигателей, соединённых между собой сверхпрочным тросом длиной 20 километров. В центре связки находятся несколько отсеков для экипажа. Корабль использует первый двигатель, чтобы набрать скорость, близкую к световой, а второй - чтобы погасить её при выходе на орбиту вокруг звезды. Благодаря использованию троса вместо жёсткой конструкции масса корабля составляет всего 2100 тонн (для сравнения, масса МКС - 400 тонн), из которых 2000 тонн приходятся на двигатели. Теоретически такой корабль может разогнаться до скорости в 92% от скорости света.

Модифицированный вариант данного корабля, названный Venture Star, показан в фильме «Аватар» (2011), одним из научных консультантов которого был как раз Чарльз Пелегрино. Venture Star отправляется в путешествие, разгоняясь при помощи лазеров и 16-километрового солнечного паруса, после чего тормозит у Альфы Центавра с помощью двигателя на антиматерии. На обратном пути последовательность меняется. Корабль способен разогнаться до 70% скорость света и долететь до Альфа Центавра менее чем за 7 лет.

Без топлива

Как существующие, так и перспективные ракетные двигатели имеют одну проблему - топливо всегда составляет большую часть их массы на старте. Однако есть проекты звездолётов, которым вообще не нужно будет брать с собой топливо.

В 1960 году физик Роберт Бассард предложил концепцию двигателя, который использовал бы находящийся в межзвёздном пространстве водород в качестве горючего для термоядерного двигателя. К сожалению, несмотря на всю привлекательность идеи (водород - самый распространённый элемент во Вселенной), у неё есть ряд теоретических проблем, начиная от способа сбора водорода и заканчивая расчётной максимальной скоростью, которая вряд ли превысит 12% световой. А значит, до системы Альфа Центавра придётся лететь минимум полвека.

Другая интересная концепция - применение солнечного паруса. Если построить на земной орбите или на Луне огромный сверхмощный лазер, то его энергию можно было бы использовать, чтобы разогнать оснащённый гигантским солнечным парусом звездолёт до достаточно больших скоростей. Правда, по расчётам инженеров, чтобы придать пилотируемому кораблю массой 78 500 тонн скорость в половину световой, потребуется солнечный парус диаметром в 1000 километров.

Ещё одна очевидная проблема звездолёта с солнечным парусом заключается в том, что его нужно как-то затормозить. Одно из её решений - при подлёте к цели выпустить позади звездолёта второй, меньший по размерам парус. Основной же отсоединится от корабля и продолжит самостоятельное путешествие.

***

Межзвёздное путешествие - очень сложное и дорогостоящее предприятие. Создать корабль, способный за относительно небольшой срок покрыть космическое расстояние, - одна из самых грандиозных задач, стоящих перед человечеством в будущем. Конечно, это потребует усилий нескольких государств, если не всей планеты. Сейчас это кажется утопией - у правительств слишком много забот и слишком много способов потратить деньги. Полёт на Марс в миллионы раз проще полёта к Альфе Центавра - и тем не менее вряд ли сейчас кто-то рискнёт назвать год, когда он всё же состоится.

Оживить работы в этом направлении может или глобальная опасность, грозящая всей планете, или же создание единой планетарной цивилизации, которая сможет преодолеть внутренние склоки и захочет покинуть свою колыбель. Время для этого ещё не пришло - но это не значит, что оно не придёт никогда.

В наше время космическими полетами уже никого не удивишь. В СМИ регулярно сообщают о новых запусках, а услуги, предоставляемые космическими аппаратами – например, спутниковое телевидение или GPS-навигация – широко используются «в быту». Но, пожалуй, назвать все эти успехи человечества «освоением космоса» было бы чересчур громко. Пока что мы осваиваем главным образом околоземное пространство. Так, большая часть спутников находятся на геостационарной орбите – ее высота (35 786 км) превосходит диаметр Земли менее чем втрое. А «ближний космос» находится всего в нескольких сотнях километров от планеты: например, высота полета Международной космической станции – менее 400 км. Не слишком-то много в масштабах Вселенной…

Конечно, созданные человеком аппараты уже побывали и на Луне, и на других планетах Солнечной системы, а станции «Пионер» и «Вояджер» даже вышли за ее пределы. Но если они и сумеют достичь ближайших звезд, мы об этом вряд ли узнаем. Ведь такой полет займет приблизительно 2 миллиона лет, а связь с аппаратами прервется куда раньше. Очевидно, что межзвездные перелеты требуют новых принципов движения в космосе – традиционные ракетные двигатели для этой цели не очень-то годятся. Между тем, в соседних звездных системах человек мог бы найти немало интересного для себя. Сейчас открыто уже более 1000 экзопланет, и не исключено, что некоторые из них пригодны для жизни. Всё чаще в рядах ученых слышатся призывы обезопасить человечество от космических катастроф. По их словам, рано или поздно условия жизни на Земле могут стать непригодными для жизни, и только экспансия в космос поможет спасти наш вид. Весь вопрос в том, как ее осуществить.

По оценкам космологов, размер видимой Вселенной составляет примерно 93 млрд. световых лет, и она, как известно, продолжает расширяться. На этом фоне не только Солнечная Система, но и весь Млечный Путь (около 100 тысяч световых лет в поперечнике) выглядит крошечной песчинкой. Ситуация осложняется тем, что скорость перемещения материальных объектов, согласно специальной теории относительности (СТО), не может превышать скорость света (около 300 тысяч км/c). А ведь даже у него уходят многие тысячелетия на то, чтобы пересечь одну-единственную галактику.

В принципе, создать реактивный двигатель, способный придать аппарату околосветовую скорость, возможно даже при современном уровне технологий. Именно такой двигатель предлагают авторы проектов «Daedalus» и «Ikarus» – пожалуй, самых проработанных на сегодня планов межзвездного перелета. Но использовать их для колонизации иных миров вряд ли удастся: запасов топлива не хватит даже на торможение в конечной точке, так что полет будет, что называется, «в один конец».

Пока что путешествовать по Вселенной удается только персонажам научно-фантастических романов, в распоряжении которых есть сверхсветовые космические корабли, телепорты и прочие достижения физики будущего. Так не пора ли и нам заняться их разработкой? В далеком уже 2006 году в НАСА стартовала программа Breakthrough Propulsion Physics (BPP), призванная разработать принципиально новые двигатели для межзвездных путешествий. Несмотря на то, что один из двигателей носит имя известного ученого и популяризатора науки Стивена Хокинга, всемирно известный физик в ней не участвовал: он делает ставку на более простые аннигиляционные двигатели.

Идеи же участников BPP были куда более дерзкими. Настолько дерзкими, что многие из них возможны разве что математически: задействованные в них физические принципы, науке пока не известны. Другие, хотя и не нарушают известных законов природы, потребовали бы колоссальных затрат энергии или разработки материалов с необычными свойствами. Большая часть предложенных двигателей основано на «играх» с гравитацией. Согласно современным представлениям, гравитация есть не что иное, как кривизна пространства-времени. Нетрудно догадаться, что антигравитация должна искривлять пространство в противоположную сторону. Разместив антигравитационное вещество в корме корабля, можно было бы придать ему постоянное ускорение без всяких затрат энергии. Единственная трудность связана с тем, что частиц с отрицательной массой пока не обнаружено, и неизвестно, существуют ли они вообще.

Впрочем, вечное движение можно получить и с помощью обычной гравитации. Для этого нужно каким-то образом разделить массу на источник гравитационного поля и взаимодействующую с ним часть, а затем закрепить их неподвижно друг относительно друга. Осталось придумать, как это сделать: с тем же успехом можно было бы, например, предложить отделить электрическое поле от заряда, который его создает. Еще один способ передвижения в космосе основан на локальном изменении законов природы. Исаак Ньютон – автор первой математической теории гравитации – установил, что сила притяжения зависит от массы взаимодействующих тел и расстояния между ними. В уравнении также присутствует константа – гравитационная постоянная (G). Если каким-то образом увеличить эту постоянную в передней части космического корабля и уменьшить на его корме, возникнет эффект, по сути аналогичный антигравитации. Но величина G не зря называется постоянной: считается, что ее значение одинаково во всей Вселенной.

Впрочем, существуют и альтернативные космологические концепции, в которых гравитационная постоянная – переменная величина. Так или иначе, пока непонятно, как изменить ее искусственным путем. Двигатель Алкуберрье – пожалуй, наиболее привлекательный из предложенных проектов. В нем предлагается создать нечтовроде пространственного пузыря, который окружил бы корабль за счет сжатия пространства-времени перед его носом и расширения за кормой. Такой «пузырь» мог бы даже превысить скорость света, не нарушая СТО – ведь ограничения в скорости касаются только частиц материи, а не самого пространства. Но, к сожалению, для этого опять-таки потребуется отрицательная масса, которая пока что существует только в теории. В других проектах предлагается осваивать звездные просторы при помощи парусного флота. Когда-то морские корабли отказались от парусов в пользу двигателей: не исключено, что их космические «собратья» когда-нибудь проделают обратный путь. И это не фантастика. Солнечные паруса разгоняют аппараты за счет давления, создаваемого потоком ионизированных частиц или фотонов. Величина этого давления очень мала, поэтому паруса должны иметь весьма внушительную площадь. Сейчас они активно разрабатываются в разных странах, в том числе в России. Исследователи, работавшие в рамках BPP, имеют в своем запасе куда более оригинальные и эффективные решения. Так, они предложили создать что-то вроде солнечного диода. Такой парус должен пропускать свет только в одном направлении и отражать его в другом. Как вариант, одна сторона паруса могла бы отражать фотоны, а другая – поглощать их. Разница в давлении света создавала бы тягу даже при отсутствии в условиях «космического штиля» – при отсутствии попутного потока фотонов. «Парус Казимира» позволяет и вовсе не зависеть от излучения звезд. Эффект, предсказанный Хендриком Казимиром в 1948г., связан с флуктуациями вакуума, в ходе которых образуются короткоживущие частицы. Эти частицы носят название «виртуальных», но при этом они оказывают вполне реальное, хотя и очень слабое давление. Если каким-то образом усилить его на одной стороне паруса, корабль приобрел бы постоянное ускорение без всяких затрат топлива. О том, как именно это сделать, изобретатели умалчивают.

Программа BPP проработала 6 лет, после чего была прекращена. Спору нет: предложенные идеи весьма занимательны, но оправдывают ли они те 1,2 миллиона долларов, вложенные в разработку? Из-за значительных затрат при полном отсутствии практических результатов некоторые СМИ даже назвали программу «крупнейшей научной аферой века». Впрочем, едва ли это справедливо: ведь прорывные результаты невозможны без долгой теоретической подготовки. В конце концов, первые планы полета на Луну тоже имели мало общего с реальностью… Останутся ли разработки специалистов НАСА курьезом науки или же станут первым шагом к межзвездным путешествиям – покажет время.

Иллюстрация: depositphotos.com

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Когда-то в детстве, увлекаясь фантастикой, я прочитал книгу Артура Кларка «Черты будущего». Зачитал ее буквально до дыр. Мне очень льстило, что я доживу в этой жизни до того периода, когда мы полетим в дальний космос, освоим и заселим ближайшие планеты. Недавно я вновь перечитал эту книгу, и с грустью отметил, что ничего этого не случилось, и скорее всего не случится не только в ближайшее будущее, но и в течение еще лет ста и более. Почему я пришел к таким выводам?

Будучи уже взрослым, я начал понимать, что для таких супермасштабных проектов, как межпланетные и межзвездные перелеты, требуются не только огромные средства, но и особые технологии, знания, а самое главное консолидация всего человечества на планете. Итак, по-порядку.

Стоит признать неприятный факт, что сегодняшняя официальная наука со своими закостенелыми взглядами на мироздание, неспособно совершить открытия, которые отправят человечество к звездам. Да, за последние 20 лет компьютерные технологии сделали мощный скачек, но для космических путешествий этого явно недостаточно. Материалистическая наука, оперирующая не верными понятиями пространства, времени, энергии и материи не может сделать того открытия, которое даст людям ключ от космических врат Вселенной. Результат — мы до сих пор крутимся вокруг нашего земного шарика. Максимум, чего мы сможем достичь в ближайшие сто лет, это еще одна высадка на Луну, и возможно полет человека на Марс.

Никаких фотонных двигателей и прочих научно-фантастических аппаратов за это время построено не будет. Должна быть пересмотрена сама структура пространства-времени, и догмат о пределе скорости света, как максимально возможной и непреодолимой в физической вселенной. До сих пор у ученых нет внятного определения пространства, энергии, времени и материи. Если посмотреть в словаре эти понятия, то они, подобно циклической ссылке, ссылаются друг на друга.

И второе, для осуществления проекта межзвездных полетов потребуются все ресурсы человечества. Но современное экономико-политическое обустройство Земли неспособно на такие проекты по своей сути. Экономика, ориентированная на потребление и прибыль любой ценой, не заинтересована в подобном мероприятии, так как прибыли тут в ближайшие десятилетия ждать не стоит.

Меняя экономику планеты, понадобиться избавиться от всех конфликтов и воин на Земле, объединить человечество ради высоких целей освоения дальнего космоса, а это, при сегодняшней ситуации в мире, не видится возможным. По сути, должна образоваться Новая цивилизация на планете Земля, с новыми ценностями и порядком, новым мировозрением и мышлением, чтобы человек отправился к звездам. Невольно вспоминается роман Ефремова «Туманность Андромеды». Объединенное человечество, в этом произведении великого мастера, шагнуло далеко за пределы своего обитания. А пока Земля напоминает муравейник, где каждая особь и клан копошится и старается выжить, урвав себе территорию в пределах муравейника побольше и кусок по-жирнее. Но для исследования пространства за пределами своего жилища нужно объединение всех сил и ресурсов. А для Земли пока это слишком большая роскошь!

Могут ли межзвездные перелеты превратиться из несбыточной мечты в реальную перспективу?

Ученые всего мира говорят, что человечество все дальше продвигается в освоении космоса, появляются все новые открытия и технологии. Однако о межзвездных перелетах людям приходится пока еще только мечтать. Но так ли недостижима и нереальна эта мечта? Чем располагает человечество сегодня и каковы перспективы на будущее?

По оценкам специалистов, если прогресс не застопорится на месте, то на протяжении одного или двух веков, человечество сможет исполнить свою мечту. Сверхмощный телескоп «Кеплер» в свое время позволил астрономам обнаружить 54 экзопланеты, где не исключено развитие жизни, а сегодня уже подтверждено существование 1028 таких планет. Эти планеты, обращающиеся вокруг звезды за пределами Солнечной системы, находятся на таком отдалении от центральной звезды, что на их поверхности возможно поддержание воды в жидком состоянии.

Однако получить ответ на главный вопрос — одиноко ли человечество во Вселенной — пока невозможно из-за гигантских расстояний до ближайших планетных систем. Множество экзопланет, на расстояние ста и менее световых лет от Земли, а также громадный научный интерес, который они вызывают, заставляют взглянуть на идею межзвездных перелетов совершенно по-иному.

Полет к другим планетам будет зависеть от разработки новых технологий и выбора способа, который необходим для достижения такой далекой цели. А пока выбор еще не сделан.

Для того чтобы земляне смогли преодолевать невероятно огромные космические расстояния, причем за сравнительно короткий срок, инженерам и космологам придется создать принципиально новый двигатель. Говорить о межгалактических перелетах пока рано, но человечество могло бы исследовать – Млечный путь, галактику, в которой находится Земля и Солнечная система.

Галактика Млечный путь насчитывает около 200 – 400 миллиардов звезд, вокруг которых по своим орбитам движутся планеты. Ближе всех к Солнцу находится звезда под названием Альфа Центавра. Расстояние до нее примерно сорок триллионов километров или 4,3 световых года.

Ракете с обычным двигателем придется лететь до нее примерно 40 тысяч лет! Пользуясь формулой Циолковского легко подсчитать, что для того, чтобы разогнать космический аппарат с реактивным двигателем на ракетном топливе до скорости в 10% от скорости света, нужно больше горючего, чем его имеется на всей Земле. Поэтому говорить о космической миссии при современных технологиях, это полный абсурд.

Как считают ученые, будущие космические звездолеты смогут летать с использованием термоядерного ракетного двигателя. Реакция термоядерного синтеза позволяет производить энергию на единицу массы в среднем почти в миллион раз больше, чем при химическом процессе сгорания.

Как раз поэтому в 1970 годах группа инженеров совместно с учеными разработали проект гигантского межзвездного корабля с термоядерной двигательной установкой. Беспилотный космический корабль Дедал предполагалось оборудовать импульсным термоядерным двигателем. Небольшие гранулы должны были вбрасываться в камеру сгорания и воспламеняться пучками мощных электронных лучей. Плазма, как продукт термоядерной реакции, вылетающая из сопла двигателя, придает тяговое усилие кораблю.

Предполагалось, что Дедал должен был лететь к звезде Барнарда, путь до которой составляет шесть световых лет. Громаднейший космический корабль добрался бы до нее за 50 лет. И хотя проект не был осуществлен, до сегодняшнего дня нет более реального технического проекта.

Другим направлением в технологии создания межзвездных кораблей является солнечный парус. Использование солнечного паруса рассматривается сегодня как самый перспективный и реалистичный вариант звездолёта. Превосходство солнечного парусника в том, что на борту не нужно топливо, а это значит, что намного возрастет полезная нагрузка по сравнению с другими космическими кораблями. Уже сегодня существует возможность постройки межзвездного зонда, где давление солнечного ветра будет основным источником энергии корабля.

О серьезности намерений освоения межпланетных полетов говорит проект, который разрабатывается с 2010 года в одной из основных научных лабораторий НАСА. Ученые работают над проектом по подготовке в течение ближайших ста лет пилотируемого полета к другим звездным системам.

Ученые говорят о том, что человечество маленькими шажками продвигается к будущему, в котором полеты из одной планетной системы в другую наконец-то станут реальностью. По последним оценкам специалистов такое будущее может наступить в течение одного или двух веков, если научный прогресс не будет топтаться на месте. В свое время только при помощи сверхмощного телескопа «Кеплер» астрономы смогли обнаружить 54 потенциально обитаемых экзопланеты. Все эти далекие от нас миры располагаются в так называемой обитаемой зоне, на определенном удалении от центральной звезды, что позволяет поддерживать на планете воду в жидком состоянии.

При этом получить ответ на самый главный вопрос – одиноки ли мы во Вселенной –достаточно трудно. Из-за очень больших расстояний, которые разделяют Солнечную систему и наших ближайших соседей. К примеру, одна из «перспективных» планет Gliese 581g располагается на удалении в 20 световых лет, что довольно близко по меркам космоса, но пока что очень далеко для обычных земных технологий. Обилие экзопланет в радиусе 100 и менее световых лет от нашей родной планеты и очень большой научный и даже цивилизационный интерес, которые они представляют для всего человечества, заставляют совершенно по-новому смотреть на доселе фантастическую идею совершения межзвездных перелетов.


Главной задачей, которая сегодня стоит перед космологами и инженерами является создание принципиально нового двигателя, который позволил бы землянам преодолевать огромные космические расстояния за сравнительно небольшое время. При этом о совершении межгалактических перелетов речь пока, безусловно, не ведется. Для начала человечество могло бы исследовать нашу родную галактику – Млечный путь.

Млечный путь состоит из большого количества звезд, вокруг которых вращаются планеты. Ближайшая к Солнцу звезда носит название Альфа Центавра. Эта звезда удалена от Земли на 4,3 световых года или 40 триллионов километров. Если предположить, что ракета с обыкновенным двигателем вылетит с нашей планеты сегодня, то она сможет преодолеть это расстояние только через 40 тысяч лет! Конечно же, такая космическая миссия выглядит полным абсурдом. Марк Миллис, бывший глава проекта NASA по созданию новейших технологий в области создания двигателей и основатель фонда Tau Zero, считает, что человечеству необходимо долго и методично идти к созданию нового типа двигателя. В наши дни существует уже огромное количество теорий насчет того, каким будет этот двигатель, но какая из теорий сработает, мы не знаем. Потому Миллис считает бессмысленным делать акцент только на одной какой-то технологии.

Сегодня ученые пришли к заключению, что космические корабли будущего смогут летать при помощи использования термоядерного двигателя, солнечного паруса, двигателя на антиматерии или двигателя искривления пространства-времени (или варп-двигателя, который хорошо известен поклонникам сериала Star Trek). Последний двигатель в теории должен сделать возможными полеты быстрее скорости света, а значит, и небольшие путешествия во времени.

При этом все перечисленные технологии только лишь описаны, как их реализовать на практике пока что не знает никто. По этой же причине нет ясности, какая же именно технология подает больше всего надежд на реализацию. Правда некоторое количество солнечных парусов уже успело слетать в космос, но для осуществления пилотируемой миссии межзвездных перелетов потребуется огромный парус размерами с Архангельскую область. Принцип работы солнечного паруса практически не отличается от ветряного, только вместо потоков воздуха он ловит сверхсфокусированные лучи света, испускаемые мощной лазерной установкой, вращающейся вокруг Земли.


Марк Миллис в пресс-релизе своего фонда Tau Zero говорит о том, что правда находится где-то посередине между уже почти привычными нам солнечными парусами и совсем фантастическими разработками, вроде варп-двигателя. «Необходимо проводить научные открытия и медленно, но верно двигаться к намеченной цели. Чем больше людей мы сможем заинтересовать, тем большие объемы финансирования привлечем, именно финансирования в настоящее время катастрофически не хватает», – говорит Миллис. Марк Миллис полагает, что финансирование для больших проектов нужно собирать по крупицам, не рассчитывая, что кто-то неожиданно вложит целое состояние в реализацию амбициозных планов ученых.

Сегодня по всему миру найдется масса энтузиастов, которые верят и уверены в том, что будущее нужно строить уже сейчас. Ричард Обузи, являющийся президентом и сооснователем компании Icarus Interstellar, отмечает: «Межзвёздные перелеты – это международная инициатива многих поколений людей, которая требует огромных интеллектуальных и финансовых затрат. Уже в наши дни мы должны инициировать необходимые программы, для того чтобы через сотню лет человечество смогло вырваться за пределы нашей Солнечной системы».

В августе текущего года компания Icarus Interstellar собирается провести научную конференцию Starship Congress, на которой ведущие мировые эксперты в данной области обсудят не только возможности, но и последствия межзвездных полетов. Организаторы отмечают, что на конференции будет организована и практическая часть, на которой будут рассмотрены как краткосрочные, так и долгосрочные перспективы освоения человеком дальнего космоса.


Стоит отметить, что подобные космические путешествия требуют затрат колоссального количества энергии, о которых человечество в наши дни даже не мыслит. В то же время неправильное использование энергии может нанести невосполнимый вред как Земле, так и тем планетам, на поверхность которых человек захочет высадиться. Несмотря на все нерешенные проблемы и препятствия и Обузи, и Миллис полагают, что у человеческой цивилизации есть все шансы для того, чтобы покинуть пределы своей «колыбели». Бесценные данные о экзопланетах, звездных системах и инопланетных мирах, которые были собраны космическими обсерваториями «Гершель» и «Кеплер», помогут учеными в тщательном составлении планов полетов.

На сегодняшний день открыто и подтверждено существование около 850 экзопланет, многие из которых – это суперземли, то есть планеты, обладающие массой, которая сравнима с земной. Специалисты считают, что недалек тот день, когда астрономы смогут подтвердить наличие экзопланеты, которая бы как две капли воды походила на нашу собственную. В этом случае финансирование проектов по созданию новых ракетных двигателей возросло бы в разы. Свою роль в освоении космоса должна сыграть и добыча полезных ископаемых с астероидов, что сейчас звучит уже не так необычно, как те же межзвездные полеты. Человечество должно научиться использовать ресурсы не только Земли, но и всей Солнечной системы, полагают эксперты.

К проблеме межзвездных перелетов подключились ученые и инженеры из американского космического агентства NASA, а также агентства по перспективным оборонным научно-исследовательским разработкам США – DARPA. Они готовы объединить свои усилия в рамках реализации проекта «100-year Starship», при этом это даже не проект, а проект проекта. «100-year Starship» – это космический корабль, который смог бы выполнять межзвездные перелеты. Задача сегодняшнего этапа исследований – это создание «суммы технологий», которые необходимы для того, чтобы межзвездные перелеты превратились в реальность. Помимо этого, создается бизнес-модель, которая позволила бы привлечь в проект инвестиции.

По словам Павла Еременко, являющегося пресс-секретарем DARPA, данному проекту будут необходимы «стабильные инвестиции в финансовый и интеллектуальный капитал» из разных источников. Также Еременко подчеркнул, что цель проекта «100-year Starship» – не только разработка и последующее строительство звездолета. «Мы прилагаем все возможные усилия, для того чтобы побудить интерес нескольких поколений к инновациям и открытиям прорывных технологий во множестве дисциплин».

Специалисты агентства DARPA надеются на то, что результаты, которые будут получены при работе над этим проектом, смогут быть использованы министерством обороны США в различных областях, таких как системы жизнеобеспечения, энергетика, вычислительная техника.

Источники информации:
-http://www.vesti.ru/doc.html?id=1100469
-http://rnd.cnews.ru/reviews/index_science.shtml?2011/10/11/459501
-http://www.nkj.ru/news/18905



Понравилась статья? Поделитесь ей
Наверх