Что такое медь? Свойства, история и происхождение меди. Смотреть что такое "медь" в других словарях

ОПРЕДЕЛЕНИЕ

Медь - двадцать девятый элемент Периодической таблицы. Обозначение - Cu от латинского «cuprum». Расположен в четвертом периоде, IB группе. Относится к металлам. Заряд ядра равен 29.

Важнейшими минералами, входящими в состав медных руд, являются: халькозин, или медный блеск Cu 2 S; халькопирит, или медный колчедан CuFeS 2 ; малахит (CuOH) 2 CO 3 .

Чистая медь - тягучий вязкий металл светло-розового цвета (рис. 1), легко прокатываемый в тонкие листы. Она очень хорошо проводит теплоту и электрический ток, уступая в этом отношении только серебру. В сухом воздухе медь почти не изменяется, так как образующаяся на её поверхности тончайшая пленка оксидов (придающая меди боле темный цвет) служит хорошей защитой от дальнейшего окисления. Но в присутствии влаги и диоксида углерода поверхность меди покрывается зеленоватым налетом карбоната гидроксомеди (CuOH) 2 CO 3 .

Рис. 1. Медь. Внешний вид.

Атомная и молекулярная масса меди

ОПРЕДЕЛЕНИЕ

Относительной молекулярная масса вещества (M r) - это число, показывающее, во сколько раз масса данной молекулы больше 1/12 массы атома углерода, а относительная атомная масса элемента (A r) — во сколько раз средняя масса атомов химического элемента больше 1/12 массы атома углерода.

Поскольку в свободном состоянии хром существует в виде одноатомных молекул Cu, значения его атомной и молекулярной масс совпадают. Они равны 63,546.

Изотопы меди

Известно, что в природе медь может находиться в виде двух стабильных изотопов 63 Cu (69,1%) и 65 Cu (30,9%). Их массовые числа равны 63 и 65 соответственно. Ядро атома изотопа меди 63 Cu содержит двадцать девять протонов и тридцать четыре нейтрона, а изотоп 65 Cu - столько же протонов и тридцать шесть нейтронов.

Существуют искусственные нестабильные изотопы меди с массовыми числами от 52-х до 80-ти, а также семь изомерных состояний ядер, среди которых наиболее долгоживущим является изотоп 67 Cu с периодом полураспада равным 62 часа.

Ионы меди

Электронная формула, демонстрирующая распределение по орбиталям электронов меди выглядит следующим образом:

1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 1 .

В результате химического взаимодействия медь отдает свои валентные электроны, т.е. является их донором, и превращается в положительно заряженный ион:

Cu 0 -1e → Cu + ;

Cu 0 -2e → Cu 2+ .

Молекула и атом меди

В свободном состоянии медь существует в виде одноатомных молекул Cu. Приведем некоторые свойства, характеризующие атом и молекулу меди:

Сплавы меди

Важнейшими сплавами меди с другими металлами являются латуни (сплавы меди с цинком), медноникелевые сплавы и бронзы.

Медноникелевые сплавы подразделяются на конструкционные и электротехнические. К конструкционным относятся мельхиоры и нейзильберы. Мельхиоры содержат 20-30% никеля и небольшие количества железа и марганца, а нейзильберы содержат 5-35% никеля и 13-45% цинка. К электротехническим медноникелевым сплавам относятся константан (40% никеля, 1,5% марганца), манганин (3% никеля и 12% марганца) и копель (43% никеля и 0,5% марганца).

Бронзы подразделяются по основному входящему в их состав компоненту (кроме меди) на оловянные, алюминиевые, кремнистые и т.д.

Примеры решения задач

ПРИМЕР 1

ПРИМЕР 2

Задание В водный раствор хлорида меди (II) опустили медные электроды по 20 г каждый и подключили их к источнику постоянного тока. Через некоторое время катод вынули и растворили при нагревании в концентрированной серной кислоте, а затем добавили в раствор избыток гидроксида натрия, в результате чего выпал осадок массой 49 г. Определите массу анода после электролиза.
Решение Запишем уравнения реакций:

катод: Cu 2+ +2e→ Cu 0 ; (1)

анод: Cu 0 — 2e→ Cu 2+ . (2)

Cu + 2H 2 SO 4 = CuSO 4 + SO 2 + 2H 2 O; (3)

CuSO 4 + 2NaOH = Cu(OH) 2 ↓ + Na 2 SO 4 ; (4)

Рассчитаем количество вещества гидроксида меди (II) (осадка) (молярная масса равна 98г/моль):

n (Cu(OH) 2) = m (Cu(OH) 2) / M (Cu(OH) 2);

n (Cu(OH) 2) = 49 / 98 = 0,5 моль.

Определим количество вещества и массу меди (катода) по окончании реакции (молярная масса - 64 г/моль):

m final (Cu) = n (Cu(OH) 2) =0,5 моль;

m final (Cu) = n (Cu) × M (Cu);

m final (Cu)= 0,5 × 64 = 32 г.

Найдем массу меди, осажденной на катоде:

m(Cu) = m final (Cu) - m parent (Cu);

m(Cu) = 32 - 20 = 12 г.

Вычислим массу анода по окончании реакции. Масса анода уменьшилась ровно настолько, насколько увеличилась масса катода:

m anode = m parent (anode) — m(Cu);

m anode = 20 - 12 = 8 г.

Ответ Масса анода равна 8 г

Древние греки называли этот элемент халкосом, на латинском она именуется cuprum (Сu) или aes, а средневековые алхимики именовали этот химический элемент не иначе как Марс или Венера. Человечество давно познакомилось с медью за счет того, что в природных условиях ее можно было встретить в виде самородков, имеющих зачастую весьма внушительные размеры.

Легкая восстанавливаемость карбонатов и окислов данного элемента поспособствовала тому, что именно его, по мнению многих исследователей, наши древние предки научились восстанавливать из руды раньше всех остальных металлов.

Сначала медные породы просто-напросто нагревали на открытом огне, а затем резко охлаждали. Это приводило к их растрескиванию, что давало возможность выполнять восстановление металла.

Освоив столь нехитрую технологию, человек начал постепенно развивать ее. Люди научились вдувать при помощи мехов и труб в костры воздух, затем додумались устанавливать вокруг огня стены. В конце концов, была сконструирована и первая шахтная печь.

Многочисленные археологические раскопки позволили установить уникальный факт – простейшие медные изделия существовали уже в 10 тысячелетии до нашей эры! А более активно медь начала добываться и использоваться через 8–10 тысяч лет. Именно с тех пор человечество применяет этот уникальный по многим показателям (плотность, удельный вес, магнитные характеристики и так далее) химический элемент для своих нужд.

В наши дни медные самородки встречаются крайне редко. Медь добывают из различных , среди которых можно выделить следующие:

  • борнит (в нем купрума бывает до 65 %);
  • медный блеск (он же халькозин) с содержанием меди до 80 %;
  • медный колчедан (иначе говоря – халькоперит), содержащий порядка 30 % интересующего нас химического элемента;
  • ковеллин (в нем Cu бывает до 64 %).

Также купрум добывают из малахита, куприта, иных оксидных руд и еще без малого из 20 минералов, содержащих ее в различных количествах.

2

В простом виде описываемый элемент представляет собой металл розовато-красного оттенка, характеризуемый высокими пластичными возможностями. Природный купрум включает в себя два нуклида со стабильной структурой.

Радиус положительно заряженного иона меди имеет следующие значения:

  • при координационном показателе 6 – до 0,091 нм;
  • при показателе 2 – до 0,060 нм.

А нейтральный атом элемента характеризуется радиусом 0,128 нм и сродством к электрону 1,8 эВ. При последовательной ионизации атом имеет величины от 7,726 до 82,7 эВ.

Купрум является переходным металлом, поэтому он имеет переменные степени окисления и малый показатель электроотрицательности (1,9 единиц по шкале Полинга). (коэффициент) равняется 394 Вт/(м*К) при температурном интервале от 20 до 100 °С. Электропроводность меди (удельный показатель) составляет максимум 58, минимум 55,5 МСм/м. Более высокой величиной характеризуется лишь серебро, электропроводность других металлов, в том числе и алюминия, ниже.

Медь не может вытеснять водород из кислот и воды, так как в стандартном потенциальном ряду она стоит правее водорода. Описываемый металл характеризуется гранецентрированной кубической решеткой с величиной 0,36150 нм. Кипит медь при температуре 2657 градусов, плавится при температуре чуть больше 1083 градусов, а ее плотность равняется 8,92 грамм/кубический сантиметр (для сравнения – плотность алюминия равняется 2,7).

Другие механические свойства меди и важные физические показатели:

  • давление при 1628 °С – 1 мм рт. ст.;
  • термическая величина расширения (линейного) – 0,00000017 ед.;
  • при растяжении достигается предел прочности равный 22 кгс/мм2;
  • твердость меди – 35 кгс/мм2 (шкала Бринелля);
  • удельный вес – 8,94 г/см3;
  • модуль упругости – 132000 Мн/м2;
  • удлинение (относительное) – 60 %.

Магнитные свойства меди в какой-то мере уникальны. Элемент полностью диамагнитен, показатель его магнитной атомной восприимчивости составляет всего лишь 0,00000527 ед. Магнитные характеристики меди (впрочем, как и все ее физические параметры – вес, плотность и пр.) обуславливают востребованность элемента для изготовления электротехнических изделий. Примерно такие же характеристики имеются и у алюминия, поэтому они с описываемым металлом составляют "сладкую парочку", используемую для производства проводниковых деталей, проводов, кабелей.

Многие механические показатели меди изменить практически нереально (те же магнитные свойства, например), а вот предел прочности рассматриваемого элемента можно улучшить посредством выполнения наклепа. В данном случае он повысится примерно в два раза (до 420–450 МН/м2).

3

Купрум в системе Менделеева включен в группу благородных металлов (IB), находится он в четвертом периоде, имеет 29 порядковый номер, имеет склонность к комплексообразованию. Химические характеристики меди не менее важны, чем ее магнитные, механические и физические показатели, будь то ее вес, плотность либо иная величина. Поэтому мы будем говорить о них подробно.

Химическая активность купрума мала. Медь в условиях сухой атмосферы изменяется незначительно (можно даже сказать, что почти не изменяется). А вот при повышении влажности и наличии в окружающей среде углекислого газа на ее поверхности обычно формируется пленка зеленоватого оттенка. В ней присутствует CuCO3 и Cu(OH)2, а также различные сернистые медные соединения. Последние образовываются из-за того, что в воздухе практически всегда есть некоторое количество сероводорода и сернистого газа. Указанную зеленоватую пленку именуют патиной. Она защищает от разрушения металл.

Если медь нагреть на воздухе, начнутся процессы окисления ее поверхности. При температурах от 375 до 1100 градусов в результате окисления образуется двухслойная окалина, а при температуре до 375 градусов – оксид меди. При обычной же температуре обычно наблюдается соединение Cu с влажным хлором (итог такой реакции – появление хлорида).

С иными элементами группы галогенов медь также взаимодействует достаточно легко. В парах серы она загорается, высокий уровень сродства она имеет и к селену. Зато с углеродом, азотом и водородом Сu не соединяется даже при повышенных температурах. При контакте оксида меди с серной кислотой (разбавленной) получается сульфат и чистая медь, с иодоводородной и бромоидоводородной кислотой – иодид и бромид меди соответственно.

Если же оксид соединить с той или иной щелочью, результатом химической реакции станет появление купрата. А вот самые известные восстановители (оксид углерода, аммиак, метан и другие) способны восстановить купрум до свободного состояния.

Практический интерес представляет способность этого металла вступать в реакцию с солями железа (в виде раствора). В этом случае фиксируется восстановление железа и переход Cu в раствор. Данная реакция применяется для снятия с декоративных изделий напыленного слой меди.

В одно- и двухвалентных формах медь способна создавать комплексные соединения с высоким показателем устойчивости. К таким соединениям относят аммиачные смеси (они представляют интерес для промышленных предприятий) и двойные соли.

4

Главная сфера применения алюминия и меди известна, пожалуй, всем. Из них делают разнообразные кабели, в том числе и силовые. Способствует этому малое сопротивление алюминия и купрума, их особые магнитные возможности. В обмотках электрических приводов и в трансформаторах (силовых) широко используются медные провода, которые характеризуются уникальной чистотой меди, являющейся исходным сырьем для их выпуска. Если в такое чистейшее сырье добавить всего лишь 0,02 процента алюминия, электропроводимость изделия уменьшится процентов 8–10.

Сu, имеющий высокую плотность и прочность, а также малый вес, прекрасно поддается механической обработке. Это позволяет производить отличные медные трубы, которые демонстрируют свои высокие эксплуатационные характеристики в системах подачи газа, отопления, воды. Во многих европейских государствах именно медные трубы используются в подавляющем большинстве случаев для обустройства внутренних инженерных сетей жилых и административных строений.

Мы много сказали об электропроводимости алюминия и меди. Не забудем и об отличной теплопроводности последней. Данная характеристика дает возможность использовать медь в следующих конструкциях:

  • в тепловых трубках;
  • в кулерах персональных компьютеров;
  • в отопительных системах и системах охлаждения воздуха;
  • в теплообменниках и многих других устройствах, отводящих тепло.

Плотность и небольшой вес медных материалов и сплавов обусловили и их широкое применение в архитектуре.

5

Понятно, что плотность меди, ее вес и всевозможные химические и магнитные показатели, по большому счету, мало интересуют обычного человека. А вот целебные свойства меди хотят узнать многие.

Древние индийцы применяли медь для лечения органов зрения и различных недугов кожных покровов. Древние греки излечивали медными пластинками язвы, сильную отечность, синяки и ушибы, а также и более серьезные болезни (воспаления миндалин, врожденную и приобретенную глухоту). А на востоке медный красный порошок, растворенный в воде, применялся для восстановления сломанных костей ног и рук.

Лечебные свойства меди были хорошо известны и россиянам. Наши предки излечивали с помощью этого уникального металла холеру, эпилепсию, полиартриты и радикулиты. В настоящее время для лечения обычно используются медные пластинки, которые накладываются на специальные точки на теле человека. Целебные свойства меди при такой терапии проявляются в следующем:

  • защитный потенциал организма человека возрастает;
  • инфекционные болезни не страшны тем, кто лечится медью;
  • наблюдается снижение болевых ощущений и снятие воспалительных явлений.

Медь

МЕДЬ -и; ж.

1. Химический элемент (Сu), ковкий металл желтого цвета с красноватым отливом (широко применяется в промышленности). Добыча меди. Надраить м. самовара. Изготовить из меди котелок.

2. собир. Изделия из этого металла. Вся м. в подвале позеленела. / О музыкальных инструментах из такого металла (преимущественно духовых). М. оркестра.

3. собир. Разг. Монеты из такого металла. Дать сдачу медью. В кошельке одна м.

4. обычно чего. Красновато-желтый, цвета такого металла. Осенняя м. листьев. Любоваться медью заката.

5. Звонкий, низкий, отчётливый (о звуках). Слушать м. колоколов. В голосе звучала м.

Ме́дный (см.).

медь

(лат. Cuprum), химический элемент I группы периодической системы. Металл красного (в изломе розового) цвета, ковкий и мягкий; хороший проводник тепла и электричества (уступает только серебру); плотность 8,92 г/см 3 , t пл 1083,4°C. Химически малоактивна; в атмосфере, содержащей CO 2 , пары Н 2 O и др., покрывается патиной - зеленоватой плёнкой основного карбоната (ядовит). Из минералов важны борнит, халькопирит, халькозин, ковеллин, малахит; встречается также самородная медь. Главное применение - производство электрических проводов. Из меди изготовляют теплообменники, трубопроводы. Более 30% меди идёт на сплавы.

С небольшой задержкой проверим, не скрыл ли videopotok свой iframe setTimeout(function() { if(document.getElementById("adv_kod_frame").hidden) document.getElementById("video-banner-close-btn").hidden = true; }, 500); } } if (window.addEventListener) { window.addEventListener("message", postMessageReceive); } else { window.attachEvent("onmessage", postMessageReceive); } })();

МЕДЬ

МЕДЬ (лат. Cuprum), Cu (читается «купрум»), химический элемент с атомным номером 29, атомная масса 63,546. Латинское название меди происходит от названия острова Кипра (Cuprus), где в древности добывали медную руду; однозначного объяснения происхождения этого слова в русском языке нет.
Природная медь состоит из двух стабильных нуклидов (см. НУКЛИД) 63 Cu (69,09% по массе) и 65 Cu (30,91%). Конфигурация двух внешних электронных слоев нейтрального атома меди 3s 2 p 6 d 10 4s 1 . Образует соединения в степенях окисления +2 (валентность II) и +1 (валентность I), очень редко проявляет степени окисления +3 и +4.
В периодической системе Менделеева медь расположена в четвертом периоде и входит в группу IВ, к которой относятся такие благородные металлы, как серебро (см. СЕРЕБРО) и золото (см. ЗОЛОТО (химический элемент)) .
Радиус нейтрального атома меди 0,128 нм, радиус иона Cu + от 0,060 нм (координационное число 2) до 0,091 нм (координационное число 6), иона Cu 2+ - от 0,071 нм (координационное число 2) до 0,087 нм (координационное число 6). Энергии последовательной ионизации атома меди 7,726, 20,291, 36,8, 58,9 и 82,7 эВ. Сродство к электрону 1,8 эВ. Работа выхода электрона 4,36 эВ. По шкале Полинга электроотрицательность меди 1,9; медь принадлежит к числу переходных металлов. Стандартный электродный потенциал Cu/Cu 2+ 0,339 В. В ряду стандартных потенциалов медь расположена правее водорода и ни из воды, ни из кислот водорода не вытесняет.
Простое вещество медь - красивый розовато-красный пластичный металл.
Нахождение в природе
В земной коре содержание меди составляет около 5·10 -3 % по массе. Очень редко медь встречается в самородном виде (см. МЕДЬ САМОРОДНАЯ) (самый крупный самородок в 420 тонн найден в Северной Америке). Из руд наиболее широко распространены сульфидные руды: халькопирит (см. ХАЛЬКОПИРИТ) , или медный колчедан, CuFeS 2 (30% меди), ковеллин (см. КОВЕЛЛИН) CuS (64,4% меди), халькозин (см. ХАЛЬКОЗИН) , или медный блеск, Cu 2 S (79,8% меди), борнит (см. БОРНИТ) Cu 5 FeS 4 .(52-65% меди). Существует также много и оксидных руд меди, например: куприт (см. КУПРИТ) Cu 2 O, (81,8% меди), малахит (см. МАЛАХИТ) CuCO 3 ·Cu(OH) 2 (57,4% меди) и другие. Известно 170 медьсодержащих минералов, из которых 17 используются в промышленных масштабах.
Различных руд меди много, а вот богатых месторождений на земном шаре мало, к тому же медные руды добывают уже многие сотни лет, так что некоторые месторождения полностью исчерпаны. Часто источником меди служат полиметаллические руды, в которых, кроме меди, присутствуют железо, цинк, свинец, и другие металлы. Как примеси медные руды обычно содержат рассеянные элементы (см. РАССЕЯННЫЕ ЭЛЕМЕНТЫ) (кадмий, селен, теллур, галий, германий и другие), а также серебро, а иногда и золото. Для промышленных разработок используют руды, в которых содержание меди составляет немногим более 1% по массе, а то и менее.
В морской воде содержится примерно 1·10 -8 % меди.
Получение
Промышленное получение меди - сложный многоступенчатый процесс. Добытую руду дробят, а для отделения пустой породы используют, как правило, флотационный метод обогащения. Полученный концентрат (содержит 18-45% меди по массе) подвергают обжигу в печи с воздушным дутьем. В результате обжига образуется огарок - твердое вещество, содержащее, кроме меди, также и примеси других металлов. Огарок плавят в отражательных печах или электропечах. После этой плавки, кроме шлака, образуется так называемый штейн (см. ШТЕЙН (в металлургии)) , в котором содержание меди составляет до 40-50%.
Далее штейн подвергают конвертированию - через расплавленный штейн продувают сжатый воздух, обогащенный кислородом. В штейн добавляют кварцевый флюс (песок SiO 2). В процессе конвертирования содержащийся в штейне как нежелательная примесь сульфид железа FeS переходит в шлак и выделяется в виде сернистого газа SO 2:
2FeS + 3O 2 + 2SiO 2 = 2FeSiO 3 + 2SO 2
Одновременно сульфид меди(I) Cu 2 S окисляется:
2Cu 2 S + 3О 2 = 2Cu 2 О + 2SO 2
Образовавшийся на этой стадии Cu 2 О далее реагирует с Cu 2 S:
2Cu 2 О + Cu 2 S = 6Cu + SО 2
В результате возникает так называемая черновая медь, в которой содержание самой меди составляет уже 98,5-99,3% по массе. Далее черновую медь подвергают рафинированию. Рафинирование на первой стадии - огневое, оно заключается в том, что черновую медь расплавляют и через расплав пропускают кислород. Примеси более активных металлов, содержащихся в черновой меди, активно реагируют с кислородом и переходят в оксидные шлаки.
На заключительной стадии медь подвергают электрохимическому рафинированию в сернокислом растворе, при этом черновая медь служит анодом, а очищенная медь выделяется на катоде. При такой очистке примеси менее активных металлов, присутствовавшие в черновой меди, выпадают в осадок в виде шлама (см. ШЛАМ) , а примеси более активных металлов остаются в электролите. Чистота рафинированной (катодной) меди достигает 99,9% и более.
Физические и химические свойства
Кристаллическая решетка металлической меди кубическая гранецентрированная, параметр решетки а = 0,36150 нм. Плотность 8,92 г/см 3 , температура плавления 1083,4 °C, температура кипения 2567 °C. Медь среди всех других металлов обладает одной из самых высоких теплопроводностей и одним из самых низких электрических сопротивлений (при 20 °C удельное сопротивление 1,68·10 -3 Ом·м).
В сухой атмосфере медь практически не изменяется. Во влажном воздухе на поверхности меди в присутствии углекислого газа образуется зеленоватая пленка состава Cu(OH) 2 ·CuCO 3 . Так как в воздухе всегда имеются следы сернистого газа и сероводорода, то в составе поверхностной пленки на металлической меди обычно имеются и сернистые соединения меди. Такая пленка, возникающая с течением времени на изделиях из меди и ее сплавов, называется патиной. Патина предохраняет металл от дальнейшего разрушения. Для создания на художественных предметах «налета старины» на них наносят слой меди, который затем специально патинируется.
При нагревании на воздухе медь тускнеет и в конце концов чернеет из-за образования на поверхности оксидного слоя. Сначала образуется оксид Cu 2 O, затем - оксид CuO.
Красновато-коричневый оксид меди(I) Cu 2 O при растворении в бромо- и иодоводородной кислотах образует, соответственно, бромид меди(I) CuBr и иодид меди(I) CuI. При взаимодействии Cu 2 O с разбавленной серной кислотой возникают медь и сульфат меди:
Cu 2 O + H 2 SO 4 = Cu + CuSO 4 + H 2 O.
При нагревании на воздухе или в кислороде Cu 2 O окисляется до CuO, при нагревании в токе водорода - восстанавливается до свободного металла.
Черный оксид меди (II) CuO, как и Cu 2 O, c водой не реагирует. При взаимодействии CuO с кислотами образуются соли меди (II):
CuO + H 2 SO 4 = CuSO 4 + H 2 O
При сплавлении со щелочами CuO образуются купраты, например:
CuO + 2NaOH = Na 2 CuO 2 + H 2 O
Нагревание Cu 2 O в инертной атмосфере приводит к реакции диспропорционирования:
Cu 2 O = CuO + Cu.
Такие восстановители, как водород, метан, аммиак, оксид углерода (II) и другие восстанавливают CuO до свободной меди, например:
CuO +СО = Cu + СО 2 .
Кроме оксидов меди Cu 2 O и CuO, получен также темно-красный оксид меди (III) Cu 2 O 3 , обладающий сильными окислительными свойствами.
Медь реагирует с галогенами (см. ГАЛОГЕНЫ) , например, при нагревании хлор реагирует с медью с образованием темно-коричневого дихлорида CuCl 2 . Существуют также дифторид меди CuF 2 и дибромид меди CuBr 2 , но дииодида меди нет. И CuCl 2 , и CuBr 2 хорошо растворимы в воде, при этом ионы меди гидратируются и образуют голубые растворы.
При реакции CuCl 2 с порошком металлической меди образуется бесцветный нерастворимый в воде хлорид меди (I) CuCl. Эта соль легко растворяется в концентрированной соляной кислоте, причем образуются комплексные анионы - , 2- и [СuCl 4 ] 3- , например за счет процесса:
CuCl + НCl = H
При сплавлении меди с серой образуетcя нерастворимый в воде сульфид Cu 2 S. Сульфид меди (II) CuS выпадает в осадок, например, при пропускании сероводорода через раствор соли меди (II):
H 2 S + CuSO 4 = CuS + H 2 SO 4
C водородом, азотом, графитом, кремнием медь не реагирует. При контакте с водородом медь становится хрупкой (так называемая «водородная болезнь» меди) из-за растворения водорода в этом металле.
В присутствии окислителей, прежде всего кислорода, медь может реагировать с соляной кислотой и разбавленной серной кислотой, но водород при этом не выделяется:
2Cu + 4HCl + O 2 = 2CuCl 2 + 2H 2 O.
С азотной кислотой различных концентраций медь реагирует довольно активно, при этом образуется нитрат меди (II) и выделяются различные оксиды азота. Например, с 30%-й азотной кислотой реакция меди протекает так:
3Cu + 8HNO 3 = 3Cu(NO 3) 2 + 2NO + 4H 2 O.
С концентрированной серной кислотой медь реагирует при сильном нагревании:
Cu + 2H 2 SO 4 = CuSO 4 + SO 2 + 2H 2 O.
Практическое значение имеет способность меди реагировать с растворами солей железа (III), причем медь переходит в раствор, а железо (III) восстанавливается до железа (II):
2FeCl 3 + Cu = CuCl 2 + 2FeCl 2
Этот процесс травления меди хлоридом железа (III) используют, в частности, при необходимости удалить в определенных местах слой напыленной на пластмассу меди.
Ионы меди Cu 2+ легко образуют комплексы с аммиаком, например, состава 2+ . При пропускании через аммиачные растворы солей меди ацетилена С 2 Н 2 в осадок выпадает карбид (точнее, ацетиленид) меди CuC 2 .
Гидроксид меди Cu(OH) 2 характеризуется преобладанием основных свойств. Он реагирует с кислотами с образованием соли и воды, например:
Сu(OH) 2 + 2HNO 3 = Cu(NO 3) 2 + 2H 2 O.
Но Сu(OH) 2 реагирует и с концентрированными растворами щелочей, при этом образуются соответствующие купраты, например:
Сu(OH) 2 + 2NaOH = Na 2
Если в медноаммиачный раствор, полученный растворением Сu(OH) 2 или основного сульфата меди в аммиаке, поместить целлюлозу, то наблюдается растворение целлюлозы и образуется раствор медноаммиачного комплекса целлюлозы. Из этого раствора можно изготовить медноаммиачные волокна, которые находят применение при производстве бельевого трикотажа и различных тканей.
Применение
Медь, как полагают, - первый металл, который человек научился обрабатывать и использовать для своих нужд. Найденные в верховьях реки Тигр изделия из меди датируются десятым тысячелетием до нашей эры. Позднее широкое применение сплавов меди определило материальную культуру бронзового века (см. БРОНЗОВЫЙ ВЕК) (конец 4 - начало 1 тысячелетия до нашей эры) и в дальнейшем сопровождало развитие цивилизации на всех этапах. Медь и ее использовались для изготовления посуды, утвари, украшений, различных художественных изделий. Особенно велика была роль бронзы (см. БРОНЗА) .
С 20 века главное применение меди обусловлено ее высокой электропроводимостью. Более половины добываемой меди используется в электротехнике для изготовления различных проводов, кабелей, токопроводящих частей электротехнической аппаратуры. Из-за высокой теплопроводности медь - незаменимый материал различных теплообменников и холодильной аппаратуры. Широко применяется медь в гальванотехнике - для нанесения медных покрытий, для получения тонкостенных изделий сложной формы, для изготовления клише в полиграфии и др.
Большое значение имеют медные сплавы - латуни (см. ЛАТУНЬ) (основная добавка цинк, Zn), бронзы (сплавы с разными элементами, главным образом металлами - оловом, алюминием, берилием, свинцом, кадмием и другими, кроме цинка и никеля) и медно-никелевые сплавы, в том числе мельхиор (см. МЕЛЬХИОР) и нейзильбер (см. НЕЙЗИЛЬБЕР) . В зависимости от марки (состава) сплавы используются в самых различных областях техники как конструкционные, антидикционные, стойкие к коррозии материалы, а также как материалы с заданной электро- и теплопроводностью Так называемые монетные сплавы (медь с алюминием и медь с никелем) применяют для чеканки монет - «меди» и «серебра»; но медь входит в состав и настоящих монетного серебра и монетного золота.
Биологическая роль
Медь присутствует во всех организмах и принадлежит к числу микроэлементов, необходимых для их нормального развития (см. Биогенные элементы (см. БИОГЕННЫЕ ЭЛЕМЕНТЫ) ). В растениях и животных содержание меди варьируется от 10 -15 до 10 -3 %. Мышечная ткань человека содержит 1·10 -3 % меди, костная ткань - (1-26) ·10 -4 %, в крови присутствует 1,01 мг/л меди. Всего в организме среднего человека (масса тела 70 кг) содержится 72 мг меди. Основная роль меди в тканях растений и животных - участие в ферментативном катализе. Медь служит активатором ряда реакций и входит в состав медьсодержащих ферментов, прежде всего оксидаз (см. ОКСИДАЗЫ) , катализирующих реакции биологического окисления. Медьсодержащий белок пластоцианин участвует в процессе фотосинтеза (см. ФОТОСИНТЕЗ) . Другой медьсодержащий белок, гемоцианин (см. ГЕМОЦИАНИН) , выполняет роль гемоглобина (см. ГЕМОГЛОБИН) у некоторых беспозвоночных. Так как медь токсична, в животном организме она находится в связанном состоянии. Значительная ее часть входит в состав образующегося в печени белка церулоплазмина, циркулирующего с током крови и деставляющего медь к местам синтеза других медьсодержащих белков. Церулоплазмин обладает также каталитической активностью и участвует в реакциях окисления. Медь необходима для осуществления различных функций организма - дыхания, кроветворения (стимулирует усвоение железа и синтез гемоглобина), обмена углеводов и минеральных веществ. Недостаток меди вызывает болезни как растений, так и животных и человека. С пищей человек ежедневно получает 0,5-6 мг меди.
Сульфат меди и другие соединения меди используют в сельском хозяйстве в качестве микроудобрений и для борьбы с различными вредителями растений. Однако при использовании соединений меди, при работах с ними нужно учитывать, что они ядовиты. Попадание солей меди в организм приводит к различным заболеваниям человека. ПДК для аэрозолей меди составляет 1 мг/м 3 , для питьевой воды содержание меди должно быть не выше 1,0 мг/л.


Энциклопедический словарь . 2009 .

Синонимы :

Твердый металл медь люди научились плавить еще до нашей эры. Название элемента по таблице Менделеева – Cuprum, в честь первого массового расположения производства меди. Именно на острове Кипр в третьем тысячелетии до н.э. начали добывать руду. Металл зарекомендовал себя как хорошее оружие и красивый, блестящий материал для изготовления посуды и других приборов.

Процесс плавления меди

Изготовление предметов требовало множество усилий при отсутствии технологий. В первых шагах развития цивилизации и поиску новых металлов, люди научились добывать и плавить медную руду. Получение руды происходило в малахитовом, а не в сульфидном состоянии. Получение на выходе свободной меди, из которой можно изготавливать детали, требовало обжига. Для исключения окислов, металл с древесным углем размещалась в сосуд из глины. Поджигался металл в специально подготовленной яме, образующийся в процессе угарный газ способствовал процессу появления свободной меди.

Для точных расчетов использовался график плавления меди. В то время производился точный расчет времени и примерная температура, при которой происходит плавка меди.

Медь и ее сплавы

Металл имеет красновато-желтый оттенок благодаря оксидной пленке, которая образуется при первом взаимодействии металла с кислородом. Пленка придает благородный вид и обладает антикоррозийными свойствами.

Сейчас доступно несколько способов добычи металла. Распространёнными являются медный колчедан и блеск, которые встречаются в виде сульфидных руд. Каждая из технологий получения меди требует особого подхода и следования процессу.

Добыча в природных условиях происходит в виде поиска медных сланцев и самородков. Объемные месторождения в виде осадочных пород находятся в Чили, а медные песчаники и сланцы расположились на территории Казахстана. Использование металла обусловлено невысокой температурой плавления. Практически все металлы плавятся путем разрушения кристаллической решетки.

Основной порядок плавления и свойства:

  • на температурных порогах от 20 до 100° материал полностью сохраняет свои свойства и внешний вид, верхний оксидный слой остается на месте;
  • кристаллическая решетка распадается на отметке 1082°, физическое состояние становится жидким, а цвет белым. Уровень температуры задерживается на некоторое время, а затем продолжает рост;
  • температура кипения меди начинается на отметке 2595°, выделяется углерод, происходит характерное бурление;
  • при отключении источника тепла происходит снижение температуры, происходит переход в твердую стадию.

Плавка меди возможна в домашних условиях, при соблюдении определенных условий. Этапы и сложность задачи зависят от выбора оборудования.

Физические свойства

Основные характеристики металла:

  • в чистом виде плотность металла составляет 8.93 г/см 3 ;
  • хорошая электропроводность с показателем 55,5S, при температуре около 20⁰;
  • теплопередача 390 Дж/кг;
  • кипение происходит на отметке 2600°, после чего начинает выделение углерода;
  • удельное электрическое сопротивление в среднем температурном диапазоне – 1.78×10 Ом/м.

Основными направлениями эксплуатации меди является электротехнические цели. Высокая теплоотдача и пластичность дают возможность применения к различным задачам. Сплавы меди с никелем, латунью, бронзой, делаю более приемлемой себестоимость и улучшают характеристики.

В природе она не однородна по своему составу, так как содержит ряд кристаллических элементов, образующих с ней устойчивую структуру, так называемые растворы, которые можно подразделить на три группы:

  1. Твердые растворы. Образуются, если в составе содержаться примеси железа, цинка, сурьмы, олова, никеля и многих других веществ. Такие вхождения существенно снижают ее электрическую и тепловую проводимость. Они усложняют горячий вид обработки под давлением.
  2. Примеси, растворяющиеся в медной решетке. К ним относятся висмут, свинец и другие компоненты. Не ухудшают качества электропроводимости, но затрудняют обработку под давлением.
  3. Примеси, формирующие хрупкие химические соединения. Сюда входят кислород и сера, а также другие элементы. Они ухудшают прочностные качества, в том числе снижают электропроводность.

Масса меди с примесями гораздо больше, чем в чистом виде. Ко всему прочему, элементы примесей существенно влияют на конечные характеристики уже готового продукта. Поэтому их суммарный состав, в том числе количественный, по отдельности должен регулироваться еще на этапе производства. Рассмотрим более подробно влияние каждого элемента на характеристики конечных медных изделий.

  1. Кислород. Один из самых нежелательных элементов для любого материала, не только медного. С его ростом ухудшается такое качество, как пластичность и устойчивость к коррозионным процессам. Его содержание не должно превышать 0,008%. В ходе термической обработки в результате процессов окисления количественное содержание этого элемента уменьшается.
  2. Никель. Образует устойчивый раствор и существенно снижает показатели проводимости.
  3. Сера или селен. Оба компонента одинаково влияют на качество готовой продукции. Высокая концентрация таких вхождений снижает пластичные свойства медных изделий. Содержание таких компонентов не должно превышать 0,001% от общей массы.
  4. Висмут. Негативно влияет на механические и технологические характеристики готовой продукции. Максимальное содержание не должно превышать 0,001%.
  5. Мышьяк. Он не меняет свойств, но образует устойчивый раствор, является своего рода защитником от пагубного влияния других элементов, как кислород, сурьма или висмут.

  1. Марганец. Он способен полностью раствориться в меди практически при комнатной температуре. Влияет на проводимость тока.
  2. Сурьма. Компонент лучше всех растворятся в меди, наносит ей минимальный вред. Содержание его не должно превышать 0,05% от массы меди.
  3. Олово. Образует устойчивый раствор с медью и повышает ее свойства по проведению тепла.
  4. Цинк. Его содержание всегда минимально, поэтому такого пагубного влияния он не оказывает.

Фосфор. Основной раскислитель меди, максимальное содержание которого при температуре 714°С составляет 1,7%.

Сплав на основе меди с добавлением цинка называется латунь. В некоторых ситуациях добавляется олово в меньших пропорциях. Джеймс Эмерсон в 1781 году решил запатентовать комбинацию. Содержание цинка в сплаве может варьироваться от 5 до 45%. Латуни различают в зависимости от предназначения и спецификации:

  • простые, состоящие из двух компонентов – меди и цинка. Маркировка таких сплавов обозначается буквой «Л», напрямую значащая содержание меди в сплаве в процентах;
  • многокомпонентные латуни – содержат множество других металлов в зависимости от назначения к использованию. Такие сплавы повышают эксплуатационные свойства изделий, обозначаются также буквой «Л», но с прибавлением цифр.

Физические свойства латуни относительно высокие, коррозийная стойкость на среднем уровне. Большинство сплавов не критично к пониженным температурам, возможно эксплуатировать металл в различных условиях.
Технологии получения латуни взаимодействует с процессами медной и цинковой промышленности, обработке вторичного сырья. Эффективным способом плавки является использование электропечи индукционного типа с магнитным отводом и регулировкой температуры. После получения однородной массы, она разливается в формы и подвергается процессам деформации.

Применение материала в различных отраслях, повышает на него спрос с каждым годом. Сплав применяется в суд строительстве и производстве боеприпасов, различных втулок, переходников, болтов, гаек и сантехнических материалов.

Цветной металл для изготовки изделий разных типов начали использовать с древних времен. Данный факт подтверждается найденными материалами при археологических раскопках. Состав бронзы изначально был богат оловом.

Промышленностью выпускается различное количество разновидностей бронзы. Опытный мастер способен по цвету металла определить его предназначение. Однако не каждому под силу определить точную марку бронзы, для этого используется маркировка. Способы производства бронзы подразделяются на литейные, когда происходит плавление и отлив и деформируемые.

Состав металла зависит от предназначения к использованию. Основным показателем является наличие бериллия. Повышенная концентрация элемента в сплаве, подвергнутая процедуре закаливания, может соперничать с высокопрочными сталями. Наличие в составе олова отнимает у металла гибкость и пластичность.

Производство бронзовых сплавов изменилось с древних времен фактически внедрением современного оборудования. Технология с использованием в качестве флюса в виде древесного угля используется до сих пор. Последовательность получения бронзы:

  • печь разогревается для требуемой температуры, после этого в нее устанавливается тигель;
  • после плавки металл может окислится, во избежание этого добавляют флюс в качестве древесного угля;
  • кислотным катализатором служит фосфорная медь, добавление происходит после полного прогрева сплава.

Плавка бронзы

Старинные изделия из бронзы подвержены естественным процессам – патинирование. Зеленоватый цвет с белым оттенком проявляется из-за образования пленки, обволакивающей изделие. Искусственные методы патинирования включают в себя методы с использованием серы и параллельным нагреванием до определенной температуры.

Температура плавления меди

Плавится материал при определенной температуре, которая зависит от наличия и количества сплавов в составе.

В большинстве случаев, процесс происходит при температуре от 1085°. Наличие олова в сплаве дает разбег, плавление меди может начаться при 950°. Цинк в составе также понижает нижнюю границу до 900°.

Для точных расчетов времени понадобится график плавления меди. На обычном листке бумаги используется график, где по горизонтали отмечается время, а по вертикали градусы. График должен указывать, на каких моментах поддерживается температура при нагреве для полного процесса кристаллизации.

Плавление меди в домашних условиях

В домашних условиях медные сплавы возможно плавить несколькими способами. При использовании любого из методов, понадобятся сопутствующие материалы:

  • тигель – посуда, изготовленная из закаленной меди или другого огнеупорного металла;
  • древесный уголь, понадобится в роли флюса;
  • крюк металлический;
  • форма будущего изделия.

Наиболее легким вариантом для плавления является муфельная печь. В емкость опускаются куски материала. После установки температуры плавления процесс можно наблюдать через специальное окошко. Установленная дверца позволяет удалять образованную в процессе оксидную пленку, для этого понадобиться заранее подготовленный металлический крюк.

Вторым способом плавления в домашних условиях является использование горелки или резака. Пропан – кислородное пламя отлично подойдет для работ с цинком или оловом. Куски материалов для будущего сплава помещаются в тигель, и нагреваются мастером произвольными движениями. Максимальная температура плавления меди может быть достигнута при взаимодействии с пламенем синего цвета.

Плавка меди в домашних условиях подразумевает работу с повышенными температурами. Приоритетом служит соблюдение техники безопасности. Перед любой процедурой следует одеть защитные огнеупорный перчатки и плотную, полностью закрывающую тело одежду.

Значение плотности меди

Плотность - это отношение массы к объему. Выражается она в килограммах на кубический метр всего объема. В виду неоднородности состава, значение плотности может меняться в зависимости процентного содержания примесей. Поскольку существуют разные марки медных прокатов с разным содержанием компонентов, то и значение плотности у них будет разное. Плотность меди можно найти в специализированных технических таблицах, которая равна 8,93х10 3 кг/м 3 . Это справочная величина. В этих же таблицах показан удельный вес меди, который равен 8,93 г/см 3 . Таким совпадением значений плотности и его весовых показателей характеризуются не все металлы.

Не секрет, что от плотности напрямую зависит конечная масса изготовленного изделия. Однако для расчетов гораздо правильнее использовать удельный вес. Этот показатель очень важен для производства изделий из меди или любых других металлов, но применим больше к сплавам. Он выражается отношением массы меди к объему всего сплава.

Расчет удельного веса

В настоящее время учеными разработано огромное количество способов, помогающих найти характеристики удельного веса меди, которые позволяют даже без обращения к специализированным таблицам вычислять этот немаловажный показатель. Зная его, можно с легкостью подобрать необходимые материалы, благодаря которым в конечном итоге можно получить нужную деталь с требуемыми параметрам. Это делается еще на стадии подготовки, когда планируется создать необходимую деталь из меди или ее содержащих сплавов.

Как уже говорилось выше, удельный вес меди можно подсмотреть в специализированном справочнике, но если под рукой такого нет, то его можно рассчитать по следующей формуле: вес делим на объем и получаем необходимую нам величину. Общими словами такое соотношение можно выразить как общее весовое значение к общему значению объема всего изделия.

Не стоит путать его с понятием плотности, так как он характеризует металл по-другому, хоть и имеет одинаковые значения показателей.

Рассмотрим, как можно вычислить удельный вес, если известна масса и объем медного изделия.

Например, имеем чистый медный лист толщиной 5 мм, шириной 2 м и длиной 1 м. Для начала посчитаем его объем: 5 мм * 1000 мм (1 м = 1000 мм) * 2000 мм, что составляет 10 000 000 мм 3 или 10 000 см 3 . Для удобства расчетов будем считать, что масса листа составляет 89 кг 300 грамм или 89300 грамм. Делим рассчитанный результат на объем и получаем 8,93 г/см 3 . Зная этот показатель, мы всегда с легкостью можем вычислить весовое содержание в меди того или иного сплава. Это удобно, например, для обработки металла.

Единицы измерения удельного веса

В разных системах измерения используются разные единицы для обозначения удельного веса меди:

  1. В системе измерения СГС или сантиметр-грамм-секунда используется дин/см 3 .
  2. В Международной СИ используются единицы н/м 3 .
  3. В системе МКСС или метр-килограмм-секунда-свеча применяется кг/м 3 .

Первые два показателя равны между собой, а третий при конвертации равен 0,102 кг/м 3 .

Расчет веса с использованием значений удельного веса

Не будем уходить далеко и воспользуемся примером, описанным выше. Вычислим общее содержание меди в 25 листах. Поменяем условие и будем считать, что листы изготовлены из медного сплава. Таким образом, берем удельный вес меди из таблицы и он равен 8.93 г/см 3 . Толщина листа 5 мм, площадь (1000 мм * 2000 мм) составляет 2 000 000 мм, соответственно объем будет равняться 10 000 000 мм 3 или 10 000 см 3 . Теперь умножаем удельный вес на объем и получаем 89 кг и 300 гр. Мы вычислили общий объем меди, который содержится в этих листах без учета веса самих примесей, то есть общее весовое значение может быть больше.

Теперь умножаем рассчитанный результат на 25 листов и получаем 2 235 кг. Такие расчеты уместно использовать при обработке медных деталей, так как позволяют узнать, сколько меди всего содержится в изначальных объектах. Аналогичным образом можно рассчитать медные прутки. Площадь сечения провода умножается на его длину, где получим объем прутка, а далее по аналогии с вышеописанным примером.

Как определяется плотность

Плотность меди, как и плотность любого другого вещества, является справочной величиной. Она выражается соотношением массы к объему. Самостоятельно вычислить этот показатель весьма сложно, так как без специальных приборов состав проверить невозможно.

Пример расчета плотности меди

Выражается показатель в килограммах на кубический метр или в граммах на кубический сантиметр. Показатель плотности более полезен для производителей, которые на основе имеющихся данных могут скомпоновать ту или иную деталь с требуемыми свойствами и характеристиками.

Области использования меди

Благодаря физико-механическим свойствам, она широко используется для различных отраслей промышленности. Наиболее часто ее можно встретить в электротехнической области в качестве составляющей части электрического провода. Не меньшей популярностью она пользуется также в производстве систем отопления и охлаждения, электроники и системах теплового обмена.

В строительной отрасли она используется, прежде всего, для создания разного рода конструкций, которые получаются гораздо меньше по массе, чем из любых других аналогичным материалов. Часто ее используют для кровли, так как такие изделия обладают легкостью и пластичностью. Такой материал легко обрабатывается и позволяет менять геометрии профиля, что очень удобно.

Как уже говорилось выше, основное свое применение она находит в изготовлении электрических и иных токопроводящих кабелей, где она используется для изготовления жил проводов и кабелей. Обладая хорошей электропроводностью, она дает достаточное сопротивление электронам тока.

Широко используются также сплавы меди, например, сплав меди и золота повышает прочность последнего в разы.

На стенках медных прокатов никогда не образуются соляные отложения. Такое качество полезно для транспортировки жидкостей и паров.

На основе оксидов меди получают сверхпроводники, а в чистом виде она идет на изготовление гальванических источников питания.

Она входит в состав бронзы, которая обладает стойкостью к агрессивным средам, как морская вода. Поэтому часто ее используют в навигации. Также бронзовые продукты можно увидеть на фасадах домов, как элемент декора, так как такой сплав обрабатывается легко, так как очень пластичен.

Минерал из класса самородных элементов. В природном минерале обнаруживаются Fe, Ag, Au, As и другие элементы в виде примеси или образующие с Cu твёрдые растворы. Простое вещество медь - это пластичный переходный металл золотисто-розового цвета (розового цвета при отсутствии оксидной плёнки). Один из первых металлов, широко освоенных человеком из-за сравнительной доступности для получения из руды и малой температуры плавления. Он входит в семёрку металлов, известных человеку с очень древних времён. Медь является необходимым элементом для всех высших растений и животных.

Смотрите так же:

СТРУКТУРА

Кубическая сингония, гексаоктаэдрический вид симметрии m3m, кристаллическая структура — кубическая гранецентрированная решётка. Модель представляет собой куб из восьми атомов в углах и шести атомов, расположенных в центре граней (6 граней). Каждый атом данной кристаллической решетки имеет координационное число 12. Самородная медь встречается в виде пластинок, губчатых и сплошных масс, нитевидных и проволочных агрегатов, а также кристаллов, сложных двойников, скелетных кристаллов и дендритов. Поверхность часто покрыта плёнками «медной зелени» (малахит), «медной сини» (азурит), фосфатов меди и других продуктов её вторичного изменения.

СВОЙСТВА

Медь - золотисто-розовый пластичный металл, на воздухе быстро покрывается оксидной плёнкой, которая придаёт ей характерный интенсивный желтовато-красный оттенок. Тонкие плёнки меди на просвет имеют зеленовато-голубой цвет.

Наряду с осмием, цезием и золотом, медь - один из четырёх металлов, имеющих явную цветовую окраску, отличную от серой или серебристой у прочих металлов. Этот цветовой оттенок объясняется наличием электронных переходов между заполненной третьей и полупустой четвёртой атомными орбиталями: энергетическая разница между ними соответствует длине волны оранжевого света. Тот же механизм отвечает за характерный цвет золота.

Медь обладает высокой тепло- и электропроводностью (занимает второе место по электропроводности среди металлов после серебра). Удельная электропроводность при 20 °C: 55,5-58 МСм/м. Медь имеет относительно большой температурный коэффициент сопротивления: 0,4 %/°С и в широком диапазоне температур слабо зависит от температуры. Медь является диамагнетиком.

Существует ряд сплавов меди: латуни - с цинком, бронзы - с оловом и другими элементами, мельхиор - с никелем и другие.

ЗАПАСЫ И ДОБЫЧА

Среднее содержание меди в земной коре (кларк) - (4,7-5,5)·10 −3 % (по массе). В морской и речной воде содержание меди гораздо меньше: 3·10 −7 % и 10 −7 % (по массе) соответственно. Большая часть медной руды добывается открытым способом. Содержание меди в руде составляет от 0,3 до 1,0 %. Мировые запасы в 2000 году составляли, по оценке экспертов, 954 млн т, из них 687 млн т - подтверждённые запасы, на долю России приходилось 3,2 % общих и 3,1 % подтверждённых мировых запасов. Таким образом, при нынешних темпах потребления запасов меди хватит примерно на 60 лет.
Медь получают из медных руд и минералов. Основные методы получения меди - пирометаллургия, гидрометаллургия и электролиз. Пирометаллургический метод заключается в получении меди из сульфидных руд, например, халькопирита CuFeS 2 . Гидрометаллургический метод заключается в растворении минералов меди в разбавленной серной кислоте или в растворе аммиака; из полученных растворов медь вытесняют металлическим железом.

ПРОИСХОЖДЕНИЕ

Небольшой самородок меди

Обычно самородная медь образуется в зоне окисления некоторых медносульфидных месторождений в ассоциации с кальцитом, самородным серебром, купритом, малахитом, азуритом, брошантитом и другими минералами. Массы отдельных скоплений самородной меди достигают 400 тонн. Крупные промышленные месторождения самородной меди вместе с другими медьсодержащими минералами формируются при воздействии на вулканические породы (диабазы, мелафиры) гидротермальных растворов, вулканических паров и газов, обогащенных летучими соединениями меди (например, месторождение озера Верхнее, США).
Самородная медь встречается также в осадочных породах, преимущественно в медистых песчаниках и сланцах.
Наиболее известные месторождения самородной меди — Туринские рудники (Урал), Джезказганское (Казахстан), в США (на полуострове Кивино, в штатах Аризона и Юта).

ПРИМЕНЕНИЕ

Из-за низкого удельного сопротивления, медь широко применяется в электротехнике для изготовления силовых кабелей, проводов или других проводников, например, при печатном монтаже. Медные провода, в свою очередь, также используются в обмотках энергосберегающих электроприводов и силовых трансформаторов.
Другое полезное качество меди - высокая теплопроводность. Это позволяет применять её в различных теплоотводных устройствах, теплообменниках, к числу которых относятся и широко известные радиаторы охлаждения, кондиционирования и отопления.
В разнообразных областях техники широко используются сплавы с использованием меди, самыми широко распространёнными из которых являются упоминавшиеся выше бронза и латунь. Оба сплава являются общими названиями для целого семейства материалов, в которые помимо олова и цинка могут входить никель, висмут и другие металлы.
В ювелирном деле часто используются сплавы меди с золотом для увеличения прочности изделий к деформациям и истиранию, так как чистое золото очень мягкий металл и нестойко к этим механическим воздействиям.
Прогнозируемым новым массовым применением меди обещает стать её применение в качестве бактерицидных поверхностей в лечебных учреждениях для снижения внутрибольничного бактериопереноса: дверей, ручек, водозапорной арматуры, перил, поручней кроватей, столешниц - всех поверхностей, к которым прикасается рука человека.

Медь (англ. Copper) — Cu

КЛАССИФИКАЦИЯ

Hey’s CIM Ref1.1

Strunz (8-ое издание) 1/A.01-10
Nickel-Strunz (10-ое издание) 1.AA.05
Dana (7-ое издание) 1.1.1.3
Dana (8-ое издание) 1.1.1.3


Понравилась статья? Поделитесь ей
Наверх