Исчисление вероятностей. Учебник по теории вероятностей

Хотите узнать, какие математические шансы на успех вашей ставки? Тогда для вас есть две хорошие новости. Первая: чтобы посчитать проходимость, не нужно проводить сложные расчеты и тратить большое количество времени. Достаточно воспользоваться простыми формулами, работа с которыми займёт пару минут. Вторая: после прочтения этой статьи вы с лёгкостью сможете рассчитывать вероятность прохода любой вашей сделки.

Чтобы верно определить проходимость, нужно сделать три шага:

  • Рассчитать процент вероятности исхода события по мнению букмекерской конторы;
  • Вычислить вероятность по статистическим данным самостоятельно;
  • Узнать ценность ставки, учитывая обе вероятности.

Рассмотрим подробно каждый из шагов, применяя не только формулы, но и примеры.

Быстрый переход

Подсчёт вероятности, заложенной в букмекерские коэффициенты

Первый шаг – необходимо узнать, с какой вероятностью оценивает шансы на тот или иной исход сам букмекер. Ведь понятно, что кэфы букмекерские конторы не ставят просто так. Для этого пользуемся следующей формулой:

P Б =(1/K)*100%,

где P Б – вероятность исхода по мнению букмекерской конторы;

K – коэффициент БК на исход.

Допустим, на победу лондонского Арсенала в поединке против Баварии коэффициент 4. Это значит, что вероятность его виктории БК расценивают как (1/4)*100%=25%. Или же Джокович играет против Южного. На победу Новака множитель 1.2, его шансы равны (1/1.2)*100%=83%.

Так оценивает шансы на успех каждого игрока и команды сама БК. Осуществив первый шаг, переходим ко второму.

Расчёт вероятности события игроком

Второй пункт нашего плана – собственная оценка вероятности события. Так как мы не можем учесть математически такие параметры как мотивация, игровой тонус, то воспользуемся упрощённой моделью и будем пользоваться только статистикой предыдущих встреч. Для расчёта статистической вероятности исхода применяем формулу:

P И =(УМ/М)*100%,

где P И – вероятность события по мнению игрока;

УМ – количество успешных матчей, в которых такое событие происходило;

М – общее количество матчей.

Чтобы было понятней, приведём примеры. Энди Маррей и Рафаэль Надаль сыграли между собой 14 матчей. В 6 из них был зафиксирован тотал меньше 21 по геймам, в 8 – тотал больше. Необходимо узнать вероятность того, что следующий поединок будет сыгран на тотал больше: (8/14)*100=57%. Валенсия сыграла на Месталье против Атлетико 74 матча, в которых одержала 29 побед. Вероятность победы Валенсии: (29/74)*100%=39%.

И это все мы узнаем только благодаря статистике предыдущих игр! Естественно, что на какую-то новую команду или игрока такую вероятность просчитать не получится, поэтому такая стратегия ставок подойдет только для матчей, в которых соперники встречаются не первый раз. Теперь мы умеем определять букмекерскую и собственную вероятности исходов, и у нас есть все знания, чтобы перейти к последнему шагу.

Определение ценности ставки

Ценность (валуйность) пари и проходимость имеют непосредственную связь: чем выше валуйность, тем выше шанс на проход. Рассчитывается ценность следующим образом:

V= P И *K-100%,

где V – ценность;

P И – вероятность исхода по мнению беттера;

K – коэффициент БК на исход.

Допустим, мы хотим поставить на победу Милана в матче против Ромы и подчитали, что вероятность победы «красно-черных» 45%. Букмекер предлагает нам на это исход коэффициент 2.5. Будет ли такое пари ценным? Проводим расчёты: V=45%*2.5-100%=12.5%. Отлично, перед нами ценная ставка с хорошими шансами на проход.

Возьмём другой случай. Мария Шарапова играет против Петры Квитовой. Мы хотим заключить сделку на победу Марии, вероятность которой по нашим расчетам 60%. Конторы предлагают на этот исход множитель 1.5. Определяем валуйность: V=60%*1.5-100=-10%. Как видим, ценности эта ставка не представляет и от неё следует воздержаться.

ТЕМА 1 . Классическая формула вычисления вероятности.

Основные определения и формулы:

Эксперимент, исход которого невозможно предсказать, называют случайным экспериментом (СЭ).

Событие, которое в данном СЭ может произойти, а может и не произойти, называют случайным событием .

Элементарными исходами называют события, удовлетворяющие требованиям:

1.при всякой реализации СЭ происходит один и только один элементарный исход;

2.всякое событие есть некоторая комбинация, некоторый набор элементарных исходов.

Множество всех возможных элементарных исходов полностью описывает СЭ. Такое множество принято называть пространством элементарных исходов (ПЭИ). Выбор ПЭИ для описания данного СЭ неоднозначен и зависит от решаемой задачи.

Р(А) = n (A ) / n ,

где n – общее число равновозможных исходов,

n (A ) – число исходов, составляющих событие А, как говорят еще, благоприятствующих событию А.

Слова “наудачу”, “наугад”, “случайным образом” как раз и гарантируют равновозможность элементарных исходов.

Решение типовых примеров

Пример 1. Из урны, содержащей 5 красных, 3 черных и 2 белых шара, наудачу извлекают 3 шара. Найти вероятности событий:

А – “все извлеченные шары красные”;

В – “ все извлеченные шары – одного цвета”;

С – “среди извлеченных ровно 2 черных”.

Решение:

Элементарным исходом данного СЭ является тройка (неупорядоченная!) шаров. Поэтому, общее число исходов есть число сочетаний: n == 120 (10 = 5 + 3 + 2).

Событие А состоит только из тех троек, которые извлекались из пяти красных шаров, т.е. n (A )== 10.

Событию В кроме 10 красных троек благоприятствуют еще и черные тройки, число которых равно= 1. Поэтому: n (B )=10+1=11.

Событию С благоприятствуют те тройки шаров, которые содержат 2 черных и один не черный. Каждый способ выбора двух черных шаров может комбинироваться с выбором одного не черного (из семи). Поэтому: n (C ) = = 3 * 7 = 21.

Итак: Р(А) = 10/120; Р(В) = 11/120; Р(С) = 21/120.

Пример 2. В условиях предыдущей задачи будем считать, что шары каждого цвета имеют свою нумерацию, начиная с 1. Найти вероятности событий:

D – “максимальный извлеченный номер равен 4”;

Е – “ максимальный извлеченный номер равен 3”.

Решение:

Для вычисления n (D ) можно считать, что в урне есть один шар с номером 4, один шар с большим номером и 8 шаров (3к+3ч+2б) с меньшими номерами. Событию D благоприятствуют те тройки шаров, которые обязательно содержат шар с номером 4 и 2 шара с меньшими номерами. Поэтому: n (D ) =

P (D ) = 28/120.

Для вычисления n (Е) считаем: в урне два шара с номером 3, два с большими номерами и шесть шаров с меньшими номерами (2к+2ч+2б). Событие Е состоит из троек двух типов:

1.один шар с номером 3 и два с меньшими номерами;

2.два шара с номером 3 и один с меньшим номером.

Поэтому: n (E )=

Р(Е) = 36/120.

Пример 3. Каждая из М различных частиц бросается наудачу в одну из N ячеек. Найти вероятности событий:

А – все частицы попали во вторую ячейку;

В – все частицы попали в одну ячейку;

С – каждая ячейка содержит не более одной частицы (M £ N );

D – все ячейки заняты (M =N +1);

Е – вторая ячейка содержит ровно к частиц.

Решение:

Для каждой частицы имеется N способов попасть в ту или иную ячейку. По основному принципу комбинаторики для М частиц имеем N *N *N *…*N (М-раз). Итак, общее число исходов в данном СЭ n = N M .

Для каждой частицы имеем одну возможность попасть во вторую ячейку, поэтому n (A ) = 1*1*…*1= 1 М = 1, и Р(А) = 1/ N M .

Попасть в одну ячейку (всем частицам) означает попасть всем в первую, или всем во вторую, или и т.д. всем в N -ю. Но каждый из этих N вариантов может осуществиться одним способом. Поэтому n (B )=1+1+…+1(N -раз)=N и Р(В)=N /N M .

Событие С означает, что у каждой частицы число способов размещения на единицу меньше, чем у предыдущей частицы, а первая может попасть в любую из N ячеек. Поэтому:

n (C ) = N *(N -1)*…*(N +M -1) и Р(С) =

В частном случае при M =N : Р(С)=

Событие D означает, что одна из ячеек содержит две частицы, а каждая из (N -1) оставшихся ячеек содержит по одной частице. Чтобы найти n (D ) рассуждаем так: выберем ячейку в которой будет две частицы, это можно сделать =N способами; затем выберем две частицы для этой ячейки, для этого существует способов. После этого оставшиеся (N -1) частиц распределим по одной в оставшиеся (N -1) ячеек, для этого имеется (N -1)! способов.

Итак, n (D ) =

.

Число n (E ) можно подсчитать так: к частиц для второй ячейки можно способами, оставшиеся (М – К) частиц распределяются произвольным образом по (N -1) ячейке (N -1) М-К способами. Поэтому:

Чтобы увеличить свои шансы на выигрыш, игрок должен понимать принцип работы букмекерской конторы.

Коэффициенты БК представляют собой вероятность события с определенным процентом наценки (маржей), которая в разных конторах колеблется в пределах 1.5-10%. Если бы маржи не существовало, все букмекеры бы разорились за считанные часы.

Игрок должен понимать, что собой представляют коэффициенты и ставить только на выгодные для себя цены. Поэтому ему необходимо уметь преобразовывать коэффициенты в вероятности и наоборот.

Формула перевода коэффициента в процент вероятности события:

V=1/кэф*100%

Конвертация вероятности в коэффициенты высчитывается по формуле:

К=100%/вероятность

Пример

Котировки букмекерской конторы на матч между Реалом и Ливерпулем составляют:

2.25 (П1) – 3.7 (ничья) – 3.09 (П2)

Конвертируем коэффициенты у вероятности

V(П1) = 1/2.25*100%= 44.4%

V(ничья) = 1/3.7*100%= 27%

V(П2) = 1/3.09*100%= 32.4%

Складываем вероятности этого матча и получаем суммарную вероятность

V = 44.4%+27%+32.4%= 103.8%

Многие зададутся вопросом, почему вероятность составляет больше ста процентов. Ответ банально прост, все что свыше 100% является маржей БК. В нашем случае она составляет 3.8%.

Коэффициенты на равновероятные события в идеале должны составлять К(П1) = К(П2) = 2.0 (50%), однако из-за букмекерской маржи они будут занижены. Например, если наценка БК будет составлять 7%, тогда коэффициенты будут равны 1.86, если 2%, то коэффициенты будут по 1.96.

Залог успеха успешного игрока — ставить всегда по лучшим коэффициентам. У букмекерских контор работают трейдеры, которые тоже могут ошибаться в своих расчетах. Умелые игроки такими просчетами неплохо зарабатывают себе на жизнь.

Например, победу Ювентуса над Ромой букмекер оценивает вероятностью 60% (1.66), а Вы, тщательно проанализировав матч, высчитали вероятность 67% (1.49). Если Ваши расчеты верны, то букмекерская контора даёт завышенный (ценный) коэффициент на данный исход этого события. Игрок должен непременно воспользоваться этой возможностью, сделав ставку на победу Ювентуса. Такие коэффициенты называют валуйными и при долгосрочной игре они непременно принесут игроку прибыль.

Если бы Ваша вероятность составила меньше 60%, это означало бы, что букмекерская контора занизила коэффициент на этот исход. Делать ставки по явно заниженным кэфам категорически запрещается!

Чтобы находить валуйные ставки, игроку необходимо уметь правильно анализировать вероятность исхода, хотя существует множество авторитетных сервисов, предоставляющих такие услуги за определённую плату.

ТЕМА 1 . Классическая формула вычисления вероятности.

Основные определения и формулы:

Эксперимент, исход которого невозможно предсказать, называют случайным экспериментом (СЭ).

Событие, которое в данном СЭ может произойти, а может и не произойти, называют случайным событием .

Элементарными исходами называют события, удовлетворяющие требованиям:

1.при всякой реализации СЭ происходит один и только один элементарный исход;

2.всякое событие есть некоторая комбинация, некоторый набор элементарных исходов.

Множество всех возможных элементарных исходов полностью описывает СЭ. Такое множество принято называть пространством элементарных исходов (ПЭИ). Выбор ПЭИ для описания данного СЭ неоднозначен и зависит от решаемой задачи.

Р(А) = n (A ) / n ,

где n – общее число равновозможных исходов,

n (A ) – число исходов, составляющих событие А, как говорят еще, благоприятствующих событию А.

Слова “наудачу”, “наугад”, “случайным образом” как раз и гарантируют равновозможность элементарных исходов.

Решение типовых примеров

Пример 1. Из урны, содержащей 5 красных, 3 черных и 2 белых шара, наудачу извлекают 3 шара. Найти вероятности событий:

А – “все извлеченные шары красные”;

В – “ все извлеченные шары – одного цвета”;

С – “среди извлеченных ровно 2 черных”.

Решение:

Элементарным исходом данного СЭ является тройка (неупорядоченная!) шаров. Поэтому, общее число исходов есть число сочетаний: n == 120 (10 = 5 + 3 + 2).

Событие А состоит только из тех троек, которые извлекались из пяти красных шаров, т.е. n (A )== 10.

Событию В кроме 10 красных троек благоприятствуют еще и черные тройки, число которых равно= 1. Поэтому: n (B )=10+1=11.

Событию С благоприятствуют те тройки шаров, которые содержат 2 черных и один не черный. Каждый способ выбора двух черных шаров может комбинироваться с выбором одного не черного (из семи). Поэтому: n (C ) = = 3 * 7 = 21.

Итак: Р(А) = 10/120; Р(В) = 11/120; Р(С) = 21/120.

Пример 2. В условиях предыдущей задачи будем считать, что шары каждого цвета имеют свою нумерацию, начиная с 1. Найти вероятности событий:

D – “максимальный извлеченный номер равен 4”;

Е – “ максимальный извлеченный номер равен 3”.

Решение:

Для вычисления n (D ) можно считать, что в урне есть один шар с номером 4, один шар с большим номером и 8 шаров (3к+3ч+2б) с меньшими номерами. Событию D благоприятствуют те тройки шаров, которые обязательно содержат шар с номером 4 и 2 шара с меньшими номерами. Поэтому: n (D ) =

P (D ) = 28/120.

Для вычисления n (Е) считаем: в урне два шара с номером 3, два с большими номерами и шесть шаров с меньшими номерами (2к+2ч+2б). Событие Е состоит из троек двух типов:

1.один шар с номером 3 и два с меньшими номерами;

2.два шара с номером 3 и один с меньшим номером.

Поэтому: n (E )=

Р(Е) = 36/120.

Пример 3. Каждая из М различных частиц бросается наудачу в одну из N ячеек. Найти вероятности событий:

А – все частицы попали во вторую ячейку;

В – все частицы попали в одну ячейку;

С – каждая ячейка содержит не более одной частицы (M £ N );

D – все ячейки заняты (M =N +1);

Е – вторая ячейка содержит ровно к частиц.

Решение:

Для каждой частицы имеется N способов попасть в ту или иную ячейку. По основному принципу комбинаторики для М частиц имеем N *N *N *…*N (М-раз). Итак, общее число исходов в данном СЭ n = N M .

Для каждой частицы имеем одну возможность попасть во вторую ячейку, поэтому n (A ) = 1*1*…*1= 1 М = 1, и Р(А) = 1/ N M .

Попасть в одну ячейку (всем частицам) означает попасть всем в первую, или всем во вторую, или и т.д. всем в N -ю. Но каждый из этих N вариантов может осуществиться одним способом. Поэтому n (B )=1+1+…+1(N -раз)=N и Р(В)=N /N M .

Событие С означает, что у каждой частицы число способов размещения на единицу меньше, чем у предыдущей частицы, а первая может попасть в любую из N ячеек. Поэтому:

n (C ) = N *(N -1)*…*(N +M -1) и Р(С) =

В частном случае при M =N : Р(С)=

Событие D означает, что одна из ячеек содержит две частицы, а каждая из (N -1) оставшихся ячеек содержит по одной частице. Чтобы найти n (D ) рассуждаем так: выберем ячейку в которой будет две частицы, это можно сделать =N способами; затем выберем две частицы для этой ячейки, для этого существует способов. После этого оставшиеся (N -1) частиц распределим по одной в оставшиеся (N -1) ячеек, для этого имеется (N -1)! способов.

Итак, n (D ) =

.

Число n (E ) можно подсчитать так: к частиц для второй ячейки можно способами, оставшиеся (М – К) частиц распределяются произвольным образом по (N -1) ячейке (N -1) М-К способами. Поэтому:

Итак, поговорим на тему, которая интересует очень многих. В данной статье я вам отвечу на вопрос о том, как рассчитать вероятность события. Приведу формулы для такого расчета и несколько примеров, чтобы было понятнее, как это делается.

Что такое вероятность

Начнем с того, что вероятность того, что то или иное событие произойдет – некая доля уверенности в конечном наступлении какого-то результата. Для этого расчета разработана формула полной вероятности, позволяющая определить, наступит интересующее вас событие или нет, через, так называемые, условные вероятности. Эта формула выглядит так: Р = n/m, буквы могут меняться, но на саму суть это никак не влияет.

Примеры вероятности

На простейшем примере разберем эту формулу и применим ее. Допустим, у вас есть некое событие (Р), пусть это будет бросок игральной кости, то есть равносторонний кубик. И нам требуется подсчитать, какова вероятность выпадения на нем 2 очков. Для этого нужно число положительных событий (n), в нашем случае – выпадение 2 очков, на общее число событий (m). Выпадение 2 очков может быть только в одном случае, если на кубике будет по 2 очка, так как по другому, сумма будет больше, из этого следует, что n = 1. Далее подсчитываем число выпадения любых других цифр на кости, на 1 кости – это 1, 2, 3, 4, 5 и 6, следовательно, благоприятных случаев 6, то есть m = 6. Теперь по формуле делаем нехитрое вычисление Р = 1/6 и получаем, что выпадение на кости 2 очков равно 1/6, то есть вероятность события очень мала.

Еще рассмотрим пример на цветных шарах, которые лежат в коробке: 50 белых, 40 черных и 30 зеленых. Нужно определить какова вероятность вытащить шар зеленого цвета. И так, так как шаров этого цвета 30, то есть, положительных событий может быть только 30 (n = 30), число всех событий 120, m = 120 (по общему количеству всех шаров), по формуле рассчитываем, что вытащить зеленый шар вероятность равна будет Р = 30/120 = 0,25, то есть 25 % из 100. Таким же образом, можно вычислить и вероятность вытащить шар другого цвета (черного она будет 33%, белого 42%).



Понравилась статья? Поделитесь ей
Наверх