Русский ученый генетик. Советские учёные-генетики Ученые генетики и их достижения

Генетика официально одна из молодых наук, хотя факторы наследственности и свойств различных организмов, в том числе и самого человека, интересовали людей на протяжении всей эволюции. Генетика сама по себе увлекательна и уникальна, но в то же время одна из самых сложных наук современности, требующая многолетних исследований.

К истокам развития

Становления генетики имеет длинный доисторический период. О наличии людей, которые имели особенные отличия от других, например, сиамские близнецы, сказано ещё в древних исторических трактатах, это сегодня мы называем подобные феномены генетической мутацией. А в далёкой древности эти люди воспринимались как прокажённые. Описание поколений, которые имели кровные, родовые связи между собой встречаются ещё в библии, начиная со времён Адама и Евы. Поэтому обозначение генетики как молодой науки, относительно. Впервые законы наследственности, которые положили фундамент в строение официально признанной науки, были изложены в 1865 году Менделем. По ряду разных причин, более чем на 30 лет об этих законах забыли, до момента пока в 1900 году три ботаника, живущих в разных уголках планеты, не открыли их по-новому. Так и стало принято считать весну 1900 года новой науки, а сам термин «генетика» появился через шесть лет после в 1906 году. С того момента, генетика шагнула далеко вперёд, непрерывно расширяя круг исследований. Открытий в этой области уже сделано немало и ещё ни одно ожидает учёных впереди на пути к главной цели - разгадке природы гена.

Важные открытия генетики в датах

На протяжении всего времени существования науки наблюдались новые открытия, которые влияли на развитие той или иной области генетики, их много и происходят они постоянно, остановимся на самых интересных из них:

· 1856 — установление фактора наследования Менделем;

· 1909 — появления понятия о генотипе;

· 1927 — доказано, что рентгеновские лучи имеют непосредственное влияние на мутацию всех живых организмов;

· 1944 — первые исследования ДНК;

· 1953 — создана первая структурная модель ДНК молекулы;

· 1962 — осуществлено первое клонирование живого организма (на опыте с лягушкой);

· 1969 — благодаря химическим соединениям, искусственным путём получен первый ген;

· 1985 — открытие ПЦР;

· 1986 — создание антионкогена, его клонирование и наступление новой эры борьбы с раком;

· 1988 — проект «Геном человека»;

· 2001 — расшифровка генома человека.

Удивительные генные открытия за последнее десятилетие

Ген интеллекта. Модель ДНК позволила узнать много интересного и неизведанного об человеческом организме. Интересное умозаключение сделали учёные из Калифорнии, они выявили белок, который получил название «клото» отвечающий за разум, во взаимосвязи его с геном KL-VS. Этот белок увеличивает уровень IQ сразу на шесть пунктов. Самое удивительное, его, возможно, синтезировать в лабораторных условиях искусственно, что позволит повышать интеллект человека.

Ген глупости. Учёные из Техаса выявили ген глупости. Это ген RGS14, на опыте с мышами они выявили, что если «отключить» действие этого гена, подопытные начинают быстрее ориентироваться по лабиринту и запоминать расположение находящихся там объектов. Исследователи рассчитывают, что станет возможным создать средство, которое сможет блокировать работу RGS14 и сделает человечество умнее, подарив ранее не видимые интеллектуальные способности, но для воплощения этой идеи в жизнь потребуется ещё не одно десятилетие.

Ген ожирения. Появилась прекрасная возможность списывать появления лишних килограммов на ген IRX3 и винить его во всех тяжких. Определено, что он влияет на процент жира по отношению к общей массе. Дальнейшие исследования этого направления позволят найти эффективное средство от лишнего веса и сахарного диабета.

Ген счастья. Лондонскими специалистами описан ген, его название 5-HTTLPR, отвечающий за эмоции. Суть его действия полагается в том, что благодаря нему происходит снабжение клеток серотонином. А он, в свою очередь, отвечает за наши эмоции, заставляя нас радоваться или огорчаться, всё зависит от сопутствующих факторов. Люди, у которых серотонин в ограниченном количестве больше подвержены депрессии и упадническому настроению. По мнению британских учёных, чем длиннее вариация 5-HTTLPR, тем лучше происходит доставка серотонина.

Самые необычные эксперименты

С каждым витком развития генетики, учёные пытаются сделать всё новые, неизведанные ранее открытия и порой они становятся даже интересными, но в то же самое время нелепыми.

Поразительное и необъяснимое явление наблюдается в небольшом городке Бразилии, где каждая пятая женщина рождает близнецов, мало этого они все белокурые и с голубыми глазами, что абсолютно не свойственно бразильцам. Предполагается, что причастен к этому доктор Менгель, известный своими ужасными экспериментами над людьми, он загубил тысячи жизни ни в чём не повинных людей, за это был прозван «Ангелом смерти». Его цель подобных экспериментов была выявить и поднять частоту рождаемости близнецов, для увеличения рождаемости детей арийской расы. Так вот этот зверский врач в 60-х годах посещал описываемый город в Бразилии с целью лечить жительниц этого поселения. Причастен ли он к теперешнему тотальному рождению близнецов, сказать невозможно, так как эта тайна ушла вместе с Менгелем в могилу.

Ещё одним экспериментом генетиков стало клонирование замороженной мыши, в таком состоянии она пробыла 16 лет. После ряда неудачных попыток, учёным все же удалось воссоздать клон этого несчастного животного, кто знает, может, благодаря подобным экспериментам, скоро у нас на планете появятся мамонты и динозавры?

быстрорастущие деревья ещё один генный эксперимент, этот вид растений способен достигать 27 метров в высоту всего лишь за шесть лет. Выведено такое дерево было не для красоты, а в целях получения нового, альтернативного вида топлива.

Вот сколько всего необычного получилось узнать учёным в области генетики, многие из этих открытий значительно повлияли на ход истории и жизни человечества. Пределу совершенства этой науки пока не видно, с интересом будем наблюдать за новыми генетическими исследованиями нашего тысячелетия.

В 2017 году cпециалисты по наследственности предоставили миру невероятные новые инструменты генетического редактирования и обнаружили уязвимые места бактерий и вирусов. Помимо этого, они сделали ряд фундаментальных открытий, которые приблизили нас к пониманию феномена жизни. Мы выбрали 10 главных открытий и достижений в области генетики за 2017 год.

1. Впервые отредактирован геном живого человека

Операцию провели в Калифорнии сотрудники компании Sangamo Therapeutics. Все прочие опыты, за исключением одного в Китае, о котором мало что известно, осуществлялись исключительно на образцах эмбриональной ткани.

Для 44-летнего пациента редактирование генома стало последним шансом. Брайан Маде страдает от синдрома Хантера, связанного с неспособностью печени производить важный фермент для расщепления мукополисахаридов. Фермент приходится вводить искусственно, что очень дорого, к тому же для борьбы с последствиями болезни Маде пришлось пройти через 26 операций. Чтобы помочь Брайану, ему внутривенно ввели миллиарды копий корректирующих генов, а также генетические инструменты, которые должны разрезать ДНК в определенных местах. Геном клеток печени должен измениться на всю оставшуюся жизнь. В случае успеха лечения исследователи продолжат эксперименты с другими наследственными заболеваниями.


2. Создан стабильный полусинтетический организм

В основе любой жизни на Земле лежат четыре буквы-нуклеиновых основания: аденин, тимин, цитозин и гуанин (A, T, C, G). Используя этот алфавит, можно создать любой живой организм, от бактерии до кита. Ученые давно пытаются «взломать» этот код, и в этом году им это, наконец, удалось. Прорыв совершили генетики из Исследовательского института Скриппс. Они дополнили генетический алфавит двумя новыми буквами — X и Y, которые вставили в ДНК кишечной палочки.

Вводить искусственные буквы в ДНК научились уже несколько лет назад, настоящим прорывом 2017 года стала стабильность искусственного организма. Раньше основания X и Y терялись при делениях, и потомки модифицированной бактерии быстро возвращались к «дикому» состоянию. Благодаря усовершенствованию технологий и изменениям, внесенным в основание Y, удалось добиться сохранения искусственных «букв» в геноме бактерий на протяжении 60 поколений. Применение новой технологии на практике пока остается делом будущего — возможно, ее можно будет применить для придания микроорганизмам новых свойств. Пока же для исследователей важнее тот факт, что им удалось модифицировать один из фундаментальных механизмов жизни.

3. Обнаружен «космический ген»

Мир переживает «космический Ренессанс»: компании во главе со SpaceX одна за другой рвутся в космос, а правительства планируют строить колонии на Марсе и Луне. Однако не стоит забывать, что миллионы лет наш вид и его предки эволюционировали для жизни на поверхности Земли. Важно заранее узнать, как долгое пребывание в космосе и на других планетах отразится на человеческом организме, чтобы предпринять необходимые меры защиты. К счастью, у исследователей появилась такая возможность — астронавт Скотт Келли, который провел на МКС около года, и его брат-близнец Марк, остававшийся на Земле, согласились на полное обследование своих организмов.

Помимо ожидаемых физиологических изменений, вызванных невесомостью, ученые с удивлением обнаружили различия в геномах братьев. У Скотта было зафиксировано временное удлинение теломер — концевых участков хромосом, а также изменения в экспрессии более 200 000 молекул РНК. Процесс включения и выключения тысяч генов преобразовался из-за пребывания в космосе. Ученые назвали совокупность этих изменений «космическим геном». Пока неизвестно, как он повлиял на здоровье Скотта — эксперименты с близнецами Келли продолжаются.

4. Доказана эффективность генетической терапии

В 2017 году CRISPR и другие технологии генетического редактирования все активнее применяли для борьбы с различными заболеваниями. В отличие от случая Брайана Маде, большинство подобных методик не требуют масштабных модификаций генома, а клетки редактируются не в организме пациента, а в лаборатории. Подобные способы получили название генетической терапии. В уходящем году исследователи неоднократно доказывали ее эффективность против различных болезней.

Самым ярким примером является борьба с опасным заболеванием, которое и само имеет генетическую природу. Речь идет о раке — точнее, пока только о некоторых его разновидностях. Исследователи продемонстрировали, что, взяв иммунные клетки больных лимфомой, с помощью генного редактирования настроив их на борьбу с опухолью и введя обратно пациенту, можно добиться высокого процента ремиссии. Метод, запатентованный под названием Kymriah™, в августе 2017 года был одобрен FDA.

5. Устойчивость к антибиотикам объяснена на молекулярном уровне

В 2017 году обеспокоенные ученые объявили, что настал конец эпохи антибиотиков. Средство, которое почти сто лет спасало миллионы человеческих жизней, быстро становится неэффективным из-за появления устойчивых к антибиотикам бактерий. Это происходит благодаря быстрому размножению микроорганизмов и их способности обмениваться генами. Одна бактерия, научившаяся сопротивляться воздействию лекарств, передаст это умение не только своим потомкам, но и любым находящимся поблизости представителям своего вида.

Однако пока одни пишут манифесты с призывами к правительствам и общественности, другие ищут у супербактерий уязвимые места. Поняв молекулярные основы устойчивости к лекарствам, мы сможем эффективно противостоять супербактериям. Датским ученым впервые удалось доказать, что гены устойчивости и гены антибиотиков родственны друг другу. Микроорганизмы рода Actinobacteria производят как антибиотики, так и вещества, способные их нейтрализовать. Болезнетворные бактерии способны «воровать» у актинобактерий гены, отвечающие за устойчивость, и распространять их по популяции. Хотя остановить горизонтальный перенос генов не под силу никому, обнаруженный механизм позволит найти новые средства борьбы с супербактериями.

6. Выявлены гены долгожительства

В отличие от различных болезней, которые можно научиться лечить, старение является по-настоящему экзистенциальной проблемой. Исследователи твердо намерены «отменить» его, но мы пока точно не знаем ни механизмов старения, ни последствий, которые его исчезновение произведет в обществе. Впрочем, специалисты настроены оптимистично. В 2017 году был проведен целый ряд исследований в области генетики старения, которые могут стать ключом к решению проблемы.

Одним из направлений стал поиск мутаций, связанных с долгожительством. Одна из них была обнаружена в общине амишей. Мутация отвечала за сниженный уровень ингибитора активатора плазминогена (PAI-1). Ее носители жили в среднем на 14 лет дольше, чем другие амиши (85 лет против 71 года). Также они реже болели возрастными заболеваниями, а их теломеры были длиннее. В других исследованиях было показано, что мутация рецептора гормона роста повышает продолжительность жизни у мужчин, а уровень интеллекта генетически связан с медленным старением. Также в прошедшем году китайские ученые обнаружили ген долгожительства у червей. На основе всех этих работ можно попытаться создать настоящее лекарство против старости. Возможно, одним из методов станет генетическая коррекция митохондрий — внутриклеточных батареек, которые с возрастом теряют гибкость.

7. Генетический скрининг стал еще точнее

Мы — это наши гены. По крайней мере, эта идея верна в отношении здоровья, ведь причиной многих болезней является генетическая предрасположенность к ним. Расшифровав свою ДНК, можно узнать о рисках тех или иных заболеваний и предпринять меры профилактики. В 2017 году технологии генетического скрининга совершенствовались и становились все более доступными благодаря ученым и представителям биотехнологических компаний. Например, теперь можно заранее предсказать риск развития сердечно-сосудистых заболеваний и даже склонность к прокрастинации.

Генетический скрининг важен не только для взрослых, но и для еще не родившихся детей и их родителей, и в этой сфере также есть движение вперед. Так, прошлогоднее исследование показало, что новая методика диагностики синдрома Дауна (и ряда других заболеваний) повысила точность предсказаний до 95%. Теперь потенциальные родители смогут решить судьбу плода, не опасаясь ошибки. Стартап Genomic Prediction идет еще дальше: он обещает с высокой точностью предсказывать рост, интеллект и здоровье будущего ребенка. Он использует новые технологии, благодаря которым стало возможным предугадывать не только заболевания и отклонения в развитии, вызванные единичной мутацией, но и состояния, формирующиеся путем взаимодействия множества генов. По сути, это уже евгеника, и к подобной практике возникает ряд этических вопросов.

8. Уточнены генетические механизмы эволюции

У основ теории эволюции стояли Чарльз Дарвин, открывший естественный отбор, и Грегор Мендель, впервые описавший механизмы наследственности. Ученые XX века смогли узнать, как эволюция работает на молекулярном уровне. Однако мы до сих пор далеки от полного понимания этого процесса, и каждый год приносит новые открытия. 2017 не стал исключением. Одной из главных работ о связи генетики и эволюции стало изучение рыб семейства цихлид, которое продемонстрировало, что наследственностью объясняются далеко не все признаки живых организмов. Например, в формировании костей черепа рыб огромную роль играет поведение.

Помимо этого, ученые сделали еще целый ряд замечательных фундаментальных открытий генетических основ эволюции. Им удалось понять, как бесполый червь выживал без секса 18 млн лет, уточнить роль случайности в эволюции и понять, что вирусы служат важнейшим источником новых генов.

9. На ДНК впервые записали музыку

ДНК — система хранения информации, которая успешно работала миллиарды лет. Она надежна и занимает совсем немного места. Поэтому идея использовать ее для записи информации кажется очевидной, ведь люди производят и собирают все больше данных, которые нужно где-то хранить. В 2016 году ученые из Microsoft перевели 200 Мб информации в молекулу ДНК размером с крупинку соли. В 2017 исследования в этой области продолжились.

Компания Twist Bioscience сумела впервые в истории записать на ДНК музыкальный файл. Для этого были выбраны две композиции: «Tutu» Майлза Дэвиса (живая запись с джазового фестиваля в Монтре 1986 года) и хит Deep Purple «Smoke on the Water». По словам исследователей, записи получились идеальными, и любой сможет послушать их, например, через триста лет — достаточно будет воспользоваться машиной, читающей ДНК. В отличие от современных носителей, записи с помощью нуклеиновых кислот не подвержены быстрому разрушению. К тому же этот способ хранения данных настолько компактен, что, согласно расчетам, вся информация из Интернета, закодированная в ДНК, уместится в большую обувную коробку.

10. Созданы генетический принтер и биологический телепорт

С помощью 3D-печати сегодня создают дома, металлические детали и даже органы. Генетик Джон Крейг Вентер решил не останавливаться на этом и построил «генетический принтер», который вместо чернил заполняется основаниями и может печатать ДНК живых организмов. Пока речь идет о наиболее примитивных созданиях, таких как вирусы, например, вирус гриппа, и бактерии, а также об отдельных участках геномов и РНК.

Биология - очень объемная наука, которая охватывает все стороны жизни каждого живого существа, начиная от строения его микроструктур внутри тела и заканчивая связью с внешней средой и космосом. Именно поэтому разделов у этой дисциплины очень много. Однако одним из самых молодых, но перспективных и имеющих сегодня особенно важное значение является генетика. Она зародилась позже остальных, но сумела стать самой актуальной, важной и объемной наукой, имеющей собственные цели, задачи и объект изучения. Рассмотрим, какова история развития генетики и что представляет собой эта ветвь биологии.

Генетика: предмет и объект изучения

Свое название наука получила только в 1906 году по предложению англичанина Бэтсона. Определение ей можно дать следующее: это дисциплина, изучающая механизмы наследственности, ее изменчивости у разных видов живых существ. Следовательно, основной целью генетики является выяснение строения структур, ответственных за передачу наследственных признаков, и исследование самой сути этого процесса.

Объектами изучения являются:

  • растения;
  • животные;
  • бактерии;
  • грибы;
  • человек.

Таким образом, она охватывает вниманием все царства живой природы, не забыв ни одного из представителей. Однако на сегодняшний день максимально поставлены на поток исследования именно одноклеточных простейших существ, все эксперименты по генетике проводятся на них, а также на бактериях.

Чтобы прийти к имеющимся теперь результатам, история развития генетики прошла длинный и тернистый путь. В разные периоды времени она подвергалась то интенсивному развитию, то полному забвению. Однако в итоге все же получила достойное место среди всей семьи биологических дисциплин.

История развития генетики кратко

Чтобы охарактеризовать основные вехи становления рассматриваемой ветви биологии, следует обратиться в не столь далекое прошлое. Ведь свое начало генетика берет из XIX века. А официальной датой ее зарождения как полностью обособленной дисциплины считается 1900 год.

Кстати, если говорить совсем уже об истоках, то следует заметить попытки селекции растений, скрещивания животных еще очень давно. Ведь этим занимались земледельцы и скотоводы еще в XV веке. Просто происходило это не с научной точки зрения.

Таблица "История развития генетики" поможет освоить ее главные исторические моменты становления.

Период развития Основные открытия Ученые
Начальный (вторая половина XIX века)

Гибридологические исследования в области растений (исследование поколений на примере вида гороха)

Грегори Мендель (1866 год)

Открытие процесса изучение полового размножения и его значения для закрепления и передачи признаков от родителей к потомству Страсбургер, Горожанкин, Гертвиг, Ван-Беневин, Флемминг, Чистяков, Вальдейр и другие (1878-1883 гг.)
Средний (начало-середина XX века) Это период максимально интенсивного роста развития генетических исследований, если рассматривать историческую эпоху в целом. Ряд открытий в области клетки, его значения и механизмов работы, расшифровка строения ДНК, разработка и скрещивания, закладывание всех теоретических основ генетики приходится именно на этот период времени Множество отечественных ученых и генетиков со всего мира: Томас Морган, Навашин, Серебряков, Вавилов, де Фриз, Корренс, Уотсон и Крик, Шлейден, Шванн и многие другие
Современный период (вторая половина XX века и до сегодняшнего дня) Этот период характеризуется рядом открытий в области микроструктур живых существ: детальное изучение строения молекул ДНК, РНК, белка, ферментов, гормонов и прочее. Выяснение глубинных механизмов кодирования признаков и передача их по наследству, генетический код и его расшифровка, механизмы трансляции, транскрипции, репликации и так далее. Огромное значение имеют дочерние генетические науки, которых именно в этот период сформировалось немало В. Эльвинг, Ноден и другие

В приведенной выше таблице история развития генетики кратко отображена. Далее рассмотрим более подробно главные открытия разных периодов.

Основные открытия XIX века

Главными трудами этого периода стали работы трех ученых из разных стран:

  • в Голландии Г. де Фриз - изучение особенностей наследования признаков у гибридов разных поколений;
  • в Германии К. Корренс - сделал то же самое на примере кукурузы;
  • в Австрии К. Чермак - повторил опыты Менделя на посевном горохе.

Все эти открытия базировались на написанных 35 годами ранее работах Грегори Менделя, который проводил многолетние исследования и все результаты фиксировал в научных трудах. Однако эти данные не вызвали интереса у его современников.

В этот же период история развития генетики включает в себя ряд открытий по изучению половых клеток человека и животных. Доказано, что некоторые признаки, которые передаются по наследству, закрепляются без изменений. Другие же являются индивидуальными для каждого организма и выступают результатом приспособления к условиям окружающей среды. Работы проводились Страсбургером, Чистяковым, Флеммингом и многими другими.

Развитие науки в XX веке

Так как официальной датой рождения считается то неудивительно, что именно в XX веке вершилась история развития генетики. исследования, созданный к этому времени, позволяет медленно, но верно получать потрясающие результаты.

Создание новейших достижений техники дает возможность заглянуть в микроструктуры - это еще более продвигает генетику вперед в развитии. Так, были установлены:

  • структуры ДНК и РНК;
  • механизмы их синтеза и репликации;
  • молекула белка;
  • особенности наследования и закрепления;
  • локализация отдельных признаков в хромосомах;
  • мутации и их проявления;
  • появился доступ к управлению генетическим аппаратом клетки.

Наверное, одним из самых важных в этот период открытий стала расшифровка ДНК. Это было сделано Уотсоном и Криком в 1953 году. В 1941-м было доказано, что признаки кодируются в белковых молекулах. С 1944 по 1970 г. сделаны максимальные открытия в области строения, репликации и значения ДНК и РНК.

Современная генетика

История развития генетики как науки на современном этапе проявляется в интенсификации разных ее направлений. Ведь сегодня существуют:

  • молекулярная генетика;
  • медицинская;
  • популяционная;
  • радиационная и прочие.

Вторую половину XX и начало XXI века для рассматриваемой дисциплины принято считать геномной эрой. Ведь современные ученые вмешиваются уже непосредственно в весь генетический аппарат организма, учатся изменять его в нужную сторону, управлять происходящими там процессами, снижать патологические проявления, купировать их в корне.

История развития генетики в России

В нашей стране рассматриваемая наука начала свое интенсивное становление лишь во второй половине XX века. Все дело в том, что долгое время наблюдался период застоя. Это времена правления Сталина и Хрущева. Именно в эту историческую эпоху случился раскол в ученых кругах. Т. Д. Лысенко, имевший власть, заявил о том, что все исследования в области генетики недействительны. А сама она не является наукой вообще. Заручившись поддержкой Сталина, он всех известных генетиков того времени отправил на смерть. Среди них:

  • Вавилов;
  • Серебровский;
  • Кольцов;
  • Четвериков и другие.

Многие вынуждены были подстраиваться под требования Лысенко, чтобы избежать смерти и продолжать исследования. Некоторые эмигрировали в США и другие страны.

Только после ухода с поста Хрущева генетика в России получила свободу в развитии и интенсивный рост.

Отечественные ученые-генетики

Самыми значительными открытиями, которыми может гордиться рассматриваемая наука, стали и те, что осуществились нашими соотечественниками. История развития генетики именно в России связана с такими именами, как:

  • Николай Иванович Вавилов (учение об иммунитете растений, и прочее);
  • Николай Константинович Кольцов (химический мутагенез);
  • Н. В. Тимофеев-Ресовский (основоположник радиационной генетики);
  • В. В. Сахаров (природа мутаций);
  • М. Е. Лобашев (автор методических пособий по генетике);
  • А. С. Серебровский;
  • К. А. Тимирязев;
  • Н. П. Дубинин и многие другие.

Этот список можно продолжать еще долго, ведь во все времена русские умы были великими во всех отраслях и научных областях знаний.

Направления в науке: медицинская генетика

История развития медицинской генетики берет свое начало гораздо раньше, чем общая наука. Ведь еще в XV-XVIII веках были доказаны явления передачи по наследству таких заболеваний, как:

  • полидактилия;
  • гемофилия;
  • прогрессирующая хорея;
  • эпилепсия и прочие.

Была установлена отрицательная роль инцеста в сохранении здоровья и нормального развития потомства. Сегодня этот раздел генетики является очень важной областью медицины. Ведь именно он позволяет контролировать проявления и купировать многие генетические мутации еще на стадии эмбрионального развития плода.

Генетика человека

История развития берет свое начало намного позже общей генетики. Ведь заглянуть внутрь хромосомного аппарата людей стало возможным лишь при использовании самых современных технических устройств и методов исследования.

Человек стал объектом генетики в первую очередь с точки зрения медицины. Однако основные механизмы наследования и передачи признаков, закрепления и проявления их у потомства для людей ничем не отличаются от таковых у животных. Поэтому не обязательно объектом исследования использовать именно человека.

Генетика – наука, изучающая закономерности и материальные основы наследственности и изменчивости организмов, а также механизмы эволюции живого. Наследственностью называется свойство одного поколения передавать другому признаки строения, физиологические свойства и специфический характер индивидуального развития. Свойства наследственности реализуются в процессе индивидуального развития.

Наряду со сходством с родительскими формами в каждом поколении возникают те или иные различия у потомков, как результат проявления изменчивости.

Изменчивостью называется свойство, противоположное наследственности, заключающееся в изменении наследственных задатков – генов и в изменении их проявления под влиянием внешней среды. Отличия потомков от родителей возникают также вследствие возникновения различных комбинаций генов в процессе мейоза и при объединении отцовских и материнских хромосом в одной зиготе. Здесь надо отметить, что выяснение многих вопросов генетики, особенно открытие материальных носителей наследственности и механизма изменчивости организмов, стало достоянием науки последних десятилетий, выдвинувших генетику на передовые позиции современной биологии. Основные закономерности передачи наследственных признаков были установлены на растительных и животных организмах, они оказались приложимы и к человеку. В своем развитии генетика прошла ряд этапов.

Первый этап ознаменовался открытием Г. Менделем (1865) дискретности (делимости) наследственных факторов и разработкой гибридологического метода, изучения наследственности, т. е. правил скрещивания организмов и учета признаков у их потомства. Дискретность наследственности состоит в том, что отдельные свойства и при знаки организма развиваются под контролем наследственных факторов (генов), которые при слиянии гамет и образовании зиготы не смешиваются, не растворяются, а при формировании новых гамет наследуются независимо друг от друга.

Значение открытий Г. Менделя оценили после того, как его законы были вновь переоткрыты в 1900 г. тремя биологами независимо друг от друга: де Фризом в Голландии, К. Корренсом в Германии и Э. Чермаком в Австрии. Результаты гибридизации, полученные в первое десятилетие XX в. на различных растениях и животных, полностью подтвердили менделевские законы наследования признаков и показали их универсальный характер по отношению ко всем организмам, размножающимся половым путем. Закономерности наследования признаков в этот период изучались на уровне целостного организма (горох, кукуруза, мак, фасоль, кролик, мышь и др.).

Менделевские законы наследственности заложили основу теории гена – величайшего открытия естествознания XX в., а генетика превратилась в быстро развивающуюся отрасль биологии. В 1901–1903 гг. де Фриз выдвинул мутационную теорию изменчивости, которая сыграла большую роль в дальнейшем развитии генетики.

Важное значение имели работы датского ботаника В. Иоганнсена, который изучал закономерности наследования на чистых линиях фасоли. Он сформулировал также понятие «популяциям» (группа организмов одного вида, обитающих и размножающихся на ограниченной территории), предложил называть менделевские «наследственные факторы» словом ген, дал определения понятий «генотип» и «фенотип».

Второй этап характеризуется переходом к изучению явлений наследственности на клеточном уровне (питогенетика). Т. Бовери (1902–1907), У. Сэттон и Э. Вильсон (1902–1907) установили взаимосвязь между менделевскими законами наследования и распределением хромосом в процессе клеточного деления (митоз) и созревания половых клеток (мейоз). Развитие учения о клетке привело к уточнению строения, формы и количества хромосом и помогло установить, что гены, контролирующие те или иные признаки, не что иное, как участки хромосом. Это послужило важной предпосылкой утверждения хромосомной теории наследственности. Решающее значение в ее обосновании имели исследования, проведенные на мушках дрозофилах американским генетиком Т. Г. Морганом и его сотрудниками (1910–1911). Ими установлено, что гены расположены в хромосомах в линейном порядке, образуя группы сцепления. Число групп сцепления генов соответствует числу пар гомологичных хромосом, и гены одной группы сцепления могут перекомбинироваться в процессе мейоза благодаря явлению кроссинговера, что лежит в основе одной из форм наследственной комбинативной изменчивости организмов. Морган установил также закономерности наследования признаков, сцепленных с полом.

Третий этап в развитии генетики отражает достижения молекулярной биологии и связан с использованием методов и принципов точных наук – физики, химии, математики, биофизики и др. – в изучении явлений жизни на уровне молекул. Объектами генетических исследований стали грибы, бактерии, вирусы. На этом этапе были изучены взаимоотношения между генами и ферментами и сформулирована теория «один ген – один фермент» (Дж. Бидл и Э. Татум, 1940): каждый ген контролирует синтез одного фермента; фермент в свою очередь контролирует одну реакцию из целого ряда биохимических превращений, лежащих в основе проявления внешнего или внутреннего признака организма. Эта теория сыграла важную роль в выяснении физической природы гена как элемента наследственной информации.

В 1953 г. Ф. Крик и Дж. Уотсон, опираясь на результаты опытов генетиков и биохимиков и на данные рентгеноструктурного анализа, создали структурную модель ДНК в форме двойной спирали. Предложенная ими модель ДНК хорошо согласуется с биологической функцией этого соединения: способностью к самоудвоению генетического материала и устойчивому сохранению его в поколениях – от клетки к клетке. Эти свойства молекул ДНК объяснили и молекулярный механизм изменчивости: любые отклонения от исходной структуры гена, ошибки самоудвоения генетического материала ДНК, однажды возникнув, в дальнейшем точно и устойчиво воспроизводятся в дочерних нитях ДНК. В последующее десятилетие эти положения были экспериментально подтверждены: уточнилось понятие гена, был расшифрован генетический код и механизм его действия в процессе синтеза белка в клетке. Кроме того, были найдены методы искусственного получения мутаций и с их помощью созданы ценные сорта растений и штаммы микроорганизмов – продуцентов антибиотиков, аминокислот.

В последнее десятилетие возникло новое направление в молекулярной генетике – генная инженерия – система приемов, позволяющих биологу конструировать искусственные генетические системы. Генная инженерия основывается на универсальности генетического кода: триплеты нуклеотидов ДНК программируют включение аминокислот в белковые молекулы всех организмов – человека, животных, растений, бактерий, вирусов. Благодаря этому можно синтезировать новый ген или выделить его из одной бактерии и ввести его в генетический аппарат другой бактерии, лишенной такого гена.

Таким образом, третий, современный этап развития генетики открыл огромные перспективы направленного вмешательства в явления наследственности и селекции растительных и животных организмов, выявил важную роль генетики в медицине, в частности, в изучении закономерностей наследственных болезней и физических аномалий человека.

В Калифорнии сотрудники компании Sangamo Therapeutics. Все прочие опыты, за исключением одного в Китае, о котором мало что известно, осуществлялись исключительно на образцах эмбриональной ткани.

Для 44-летнего пациента редактирование генома стало последним шансом. Брайан Маде страдает от синдрома Хантера, связанного с неспособностью печени производить важный фермент для расщепления мукополисахаридов. Фермент приходится вводить искусственно, что очень дорого, к тому же для борьбы с последствиями болезни Маде пришлось пройти через 26 операций. Чтобы помочь Брайану, ему внутривенно ввели миллиарды копий корректирующих генов, а также генетические инструменты, которые должны разрезать ДНК в определенных местах. Геном клеток печени должен измениться на всю оставшуюся жизнь. В случае успеха лечения исследователи продолжат эксперименты с другими наследственными заболеваниями.

ИИ спровоцировал скачок популярности STEM-образования в Китае

Технологии

2. Создан стабильный полусинтетический организм

В основе любой жизни на Земле лежат четыре буквы-нуклеиновых основания: аденин, тимин, цитозин и гуанин (A, T, C, G). Используя этот алфавит, можно создать любой живой организм, от бактерии до кита. Ученые давно пытаются «взломать» этот код, и в этом году им это, наконец, удалось. Прорыв совершили генетики из Исследовательского института Скриппс. Они генетический алфавит двумя новыми буквами - X и Y, которые вставили в ДНК кишечной палочки.

Вводить искусственные буквы в ДНК научились уже несколько лет назад, настоящим прорывом 2017 года стала стабильность искусственного организма. Раньше основания X и Y терялись при делениях, и потомки модифицированной бактерии быстро возвращались к «дикому» состоянию. Благодаря усовершенствованию технологий и изменениям, внесенным в основание Y, удалось добиться сохранения искусственных «букв» в геноме бактерий на протяжении 60 поколений. Применение новой технологии на практике пока остается делом будущего - возможно, ее можно будет применить для придания микроорганизмам новых свойств. Пока же для исследователей важнее тот факт, что им удалось модифицировать один из фундаментальных механизмов жизни.

3. Обнаружен «космический ген»

Мир переживает «космический Ренессанс»: компании во главе со SpaceX одна за другой рвутся в космос, а правительства планируют строить колонии на Марсе и Луне. Однако не стоит забывать, что миллионы лет наш вид и его предки эволюционировали для жизни на поверхности Земли. Важно заранее узнать, как долгое пребывание в космосе и на других планетах , чтобы предпринять необходимые меры защиты. К счастью, у исследователей появилась такая возможность - астронавт Скотт Келли, который провел на МКС около года, и его брат-близнец Марк, остававшийся на Земле, согласились на .

Помимо ожидаемых физиологических изменений, вызванных невесомостью, ученые с удивлением обнаружили различия в геномах братьев. У Скотта было зафиксировано временное удлинение теломер - концевых участков хромосом, а также изменения в экспрессии более 200 000 молекул РНК. Процесс включения и выключения тысяч генов преобразовался из-за пребывания в космосе. Ученые назвали совокупность этих изменений « ». Пока неизвестно, как он повлиял на здоровье Скотта - эксперименты с близнецами Келли продолжаются.

4. Доказана эффективность генетической терапии

В 2017 году CRISPR и другие технологии генетического редактирования все активнее применяли для борьбы с различными заболеваниями. В отличие от случая Брайана Маде, большинство подобных методик не требуют масштабных модификаций генома, а клетки редактируются не в организме пациента, а в лаборатории. Подобные способы получили название генетической терапии. В уходящем году исследователи неоднократно доказывали ее эффективность против .

Самым ярким примером является борьба с опасным заболеванием, которое и само имеет генетическую природу. Речь идет о раке - точнее, пока только о некоторых его разновидностях. Исследователи продемонстрировали, что, взяв иммунные клетки больных лимфомой, с помощью генного редактирования настроив их на борьбу с опухолью и введя обратно пациенту, можно добиться высокого процента ремиссии. Метод, запатентованный под названием Kymriah™, в августе 2017 года был .

Google создал генератор речи, неотличимый от голоса человека

5. Устойчивость к антибиотикам объяснена на молекулярном уровне

В 2017 году обеспокоенные ученые объявили, что настал . Средство, которое почти сто лет спасало миллионы человеческих жизней, быстро становится неэффективным из-за появления устойчивых к антибиотикам бактерий. Это происходит благодаря быстрому размножению микроорганизмов и их способности обмениваться генами. Одна бактерия, научившаяся сопротивляться воздействию лекарств, передаст это умение не только своим потомкам, но и любым находящимся поблизости представителям своего вида.

Генетический скрининг важен не только для взрослых, но и для еще не родившихся детей и их родителей, и в этой сфере также есть движение вперед. Так, прошлогоднее исследование , что новая методика диагностики синдрома Дауна (и ряда других заболеваний) повысила точность предсказаний до 95%. Теперь потенциальные родители смогут решить судьбу плода, не опасаясь ошибки. Стартап идет еще дальше: он обещает с высокой точностью предсказывать рост, интеллект и здоровье будущего ребенка. Он использует новые технологии, благодаря которым стало возможным предугадывать не только заболевания и отклонения в развитии, вызванные единичной мутацией, но и состояния, формирующиеся путем взаимодействия множества генов. По сути, это уже евгеника, и к подобной практике возникает ряд этических вопросов.

Белоруссия легализует майнинг и криптовалюты

Технологии

8. Уточнены генетические механизмы эволюции

У основ теории эволюции стояли Чарльз Дарвин, открывший естественный отбор, и Грегор Мендель, впервые описавший механизмы наследственности. Ученые XX века смогли узнать, как эволюция работает на молекулярном уровне. Однако мы до сих пор далеки от полного понимания этого процесса, и каждый год приносит новые открытия. 2017 не стал исключением. Одной из главных работ о связи генетики и эволюции стало изучение рыб семейства цихлид, которое продемонстрировало, что наследственностью объясняются далеко не все признаки живых организмов. Например, в формировании костей черепа рыб огромную роль играет .

Помимо этого, ученые сделали еще целый ряд замечательных фундаментальных открытий генетических основ эволюции. Им удалось понять, как бесполый червь 18 млн лет, уточнить роль и понять, что вирусы служат важнейшим .

9. На ДНК впервые записали музыку

ДНК - система хранения информации, которая успешно работала миллиарды лет. Она надежна и занимает совсем немного места. Поэтому идея использовать ее для записи информации кажется очевидной, ведь люди производят и собирают все больше данных, которые нужно где-то хранить. В 2016 году ученые из Microsoft перевели размером с крупинку соли. В 2017 исследования в этой области продолжились.

Компания Twist Bioscience сумела впервые в истории записать на ДНК . Для этого были выбраны две композиции: «Tutu» Майлза Дэвиса (живая запись с джазового фестиваля в Монтре 1986 года) и хит Deep Purple «Smoke on the Water». По словам исследователей, записи получились идеальными, и любой сможет послушать их, например, через триста лет - достаточно будет воспользоваться машиной, читающей ДНК. В отличие от современных носителей, записи с помощью нуклеиновых кислот не подвержены быстрому разрушению. К тому же этот способ хранения данных настолько компактен, что, согласно расчетам, вся информация из Интернета, закодированная в ДНК, уместится в большую обувную коробку.

10. Созданы генетический принтер и биологический телепорт

С помощью 3D-печати сегодня создают дома, металлические детали и даже органы. Генетик Джон Крейг Вентер решил не останавливаться на этом и построил «генетический принтер

У технологии возможно и намного более фантастическое применение - «биологический телепорт». Отправив принтер с нужными материалами на Марс, можно будет с помощью радио отправить ему сигналы для печати бактерий. По мнению Вентера, это самый реалистичный сценарий колонизации Красной планеты: сначала микроорганизмы преобразуют среду, а потом на терраформированный Марс придет человек. Идея уже заинтересовала Илона Маска .



Понравилась статья? Поделитесь ей
Наверх